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A general method for implementing vibrationally adiabatic mixed 
quantum-classical simulations 
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An approach for carrying out vibrationally adiabatic mixed quantum-classical molecular dynamics 
simulations is presented. An appropriate integration scheme is described for the vibrationally 
adiabatic equations of motion of a diatomic solute in a monatomic solvent and an approach for 
calculating the adiabatic energy levels is presented. Specifcally, an iterative Lanczos algorithm with 
full reorthogonalization is used to solve for the lowest few vibrational eigenvalues and 
eigenfunctions. The eigenfunctions at one time step in a mixed quantum-classical trajectory are used 
to initiate the Lanczos calculation at the next time step. The basis set size is reduced by using a 
potential-optimized discrete variable representation. As a demonstration the problem of a 
homonuclear diatomic molecule in a rare gas fuid (N2 in Ar! has been treated. The approach is 
shown to be effcient and accurate. An important advantage of this approach is that it can be 
straightforwardly applied to polyatomic solutes that have multiple vibrational degrees-of-freedom 
that must be quantized. © 2003 American Institute of Physics. @DOI: 10.1063/1.1528891# 
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I. INTRODUCTION 

Quantum-mechanical effects associated with nuclei 
important in a variety of condensed phase systems inclu
proton and hydrogen atom transfer, vibrational relaxa
and dephasing, and spectroscopy. However, except for a
special cases, a fully quantum-mechanical treatment of 
tems involving more than a handful of atoms is not feasi
Fortunately, in many cases the relevant quantum effects
associated with one or only a few atoms. This has motiv
the development of mixed quantum-classical ~QC! and semi-
classical methods that can account for the relevant qua
effects in such cases, even in systems consisting of hun
or thousands of atoms. In this paper we present a metho
carrying out vibrationally adiabatic mixed quantum-classi
simulations in condensed phases that is accurate, effc
and generalizable to multiple degrees-of-freedom proble
This approach is an extension of, and a signifcant impro
ment upon, our previous work that was applicable only
nonrotating solutes.1 

One possible application of vibrationally adiabatic Q
simulations is the study of vibrational dephasing in c
densed phases.2–10 Oxtoby and co-workers have obtained t
dephasing times of diatomic molecules in condensed p
environments by using perturbation theory to calculate 
time-dependent fuctuations in the vibrational ene
levels.9,10 A completely classical simulation was used w
rigid molecules so that there was no infuence of 
quantum-mechanical system on the classical motion. 
approach has been widely and successfully used for we
coupled solute–solvent systems.9–13 A vibrationally adiabatic
QC simulation directly provides the fuctuating frequenc
of a quantum-mechanical solute from dynamics that incl
response from the quantum mode~s! onto the classical coor-
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dinates. Further, an explicit calculation of the vibrational 
ergy levels is accurate even for strong solute–solvent 
pling, unlike perturbation theory approaches. 

Another potential problem for which mixed quantum
classical simulations may be useful is vibrational relaxat
The most prevalent approach for calculating vibrational 
laxation lifetimes in condensed phase systems is base
perturbation theory in which the relaxation rate, e.g., fr
v51 to  v50, is given by14 

` 
ivok0←1~ T!5q~T! E e t^F~ t !F~0!&cldt, ~1.1! 

2` 

where vo is the frequency of the oscillator. The prefac
q(T) ensures that detailed balance is satisfed, 
k0←1(T)5e\vo /kbTk1←0(T). The classical force–force tim
correlation function, ̂F(0)F(t)&cl , is calculated by a mo
lecular dynamics simulation in which the oscillator is froz
at its equilibrium distance; F is the force exerted along th
oscillator by the solvent. Thus, the assumption is that 
relaxation occurs due to the solvent friction acting on 
oscillator. This approach has been used extensively, o
with great success.15–19 However, it has also been establish
for some time that perturbation theory can fail for hig
frequency oscillators in gas-phase collisions.20 More recent 
studies have found that the conventional perturbation the
approach14 gives lifetimes that differ signifcantly from ex
perimental measurements in both clusters21 and liquids.22,23 

This has been attributed to the potential energy surfac23 

and, more signifcantly, to the need to modify the conv
tional perturbation theory approach using quantum cor
tion factors,23–26 i.e., by choosing an appropriate q(T). How-
ever, even when such a modifcation successfully returns
correct rate, the perturbation theory still provides limited a
indirect information about how the energy is deposited in
surroundings and about competition between intramolec
9 © 2003 American Institute of Physics 
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vibrational redistribution and vibrational energy transf
These issues cannot be addressed directly in the perturb
theory approach since the dynamics of the relaxation e
itself are not simulated. 

The applicability of mixed QC approaches to calcul
vibrational relaxation rate constants ~and other quantities
within the Golden Rule formalism has been called into qu
tion by Berne and co-workers.25,27 However, they have fo
cused, in addition to perturbation theory approaches, on 
cial systems for which quantum mechanical solutions 
available. These typically involve a harmonic bath and lin
bi-linear, or exponential coupling. The ability to carry o
vibrationally adiabatic mixed QC simulations allows for
wider examination of these issues including consideratio
~1! systems with arbitrary ~anharmonic! vibrational poten-
tials and solute-solvent coupling, ~2! methods that go beyon
perturbation theory approaches to calculating the rate 
stant, ~3! comparisons of vibrationally diabatic and adiaba
approaches, and ~4! vibrational quantum state dependence
relaxation lifetimes. In these cases, testing QC method
comparison with rigorous results can be complicated by
absence of quantum-mechanical calculations; compari
with experimental data and calculations involving system
approximations must be used instead. 

One approach, suggested by Tully,28 that moves beyond
the perturbation theory approximation and allows insight 
into the basic mechanism of vibrational relaxation is a di
calculation of the vibrational relaxation rate constant b
surface hopping simulation. Many approaches for incorpo
ing nonadiabatic dynamics have been developed and c
be applied to this problem.28–35 The approach presented he
is applicable to this problem ~for cases when the vibrationa
relaxation lifetime is not too long!. Several studies have use
a surface-hopping approach with vibrationally diaba
states36,37 and one group calculated vibrational relaxati
lifetimes using a mean-feld approach based on diab
states.38 

The organization of the remainder of the paper is
follows: Mixed quantum-classical equations of motion fo
solute with a quantum mechanical vibration in a class
solvent are reviewed in Sec. II. A suitable molecular dyna
ics algorithm for integrating these equations is given in 
Appendix. The approach for solving the vibrational Sch¨-
dinger equation at each time step in a mixed quant
classical simulation is described in Secs. III and IV. Res
are presented and discussed in Sec. V. Finally, some con
ing remarks are offered in Sec. VI. 

II. EQUATIONS OF MOTION 

The mixed quantum-classical approach we conside
simply the standard Born–Oppenheimer approximatio39 

but applied between a fast vibrational coordinate and s
rotational and translational degrees-of-freedom. Vib
tionally adiabatic approaches have been used to investig
number of systems including proton trans
reactions,34,35,40– 42 vibrational relaxation,43 and vibration– 
vibration energy transfer.44 They are related to the mixe
quantum-classical time-dependent self-consistent feld
Ehrenfest approaches,30,45–51 but with important 
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differences.29 As discussed in the Introduction, vibrational
adiabatic dynamics can be generalized by incorpora
nonadiabatic transitions.28–35 

In this section, we review the mixed quantum-class
equations of motion for a single diatomic solute molec
with a quantum-mechanical vibration and classical tran
tion and rotation dissolved in a solvent of classical ato
~The extension to a molecular solvent is straightforward.!We 
begin with a purely classical Hamiltonian and ‘‘quantize’’ t
vibrational coordinate. The classical Hamiltonian for th
system can be written as 

2 2 N 2p p Pjr e
H~r ,pr ,e,pe ,Q,P!5 1 2 1 (2m 2mr j 51 2mj 

1V~r ,e,Q!, ~2.1! 

where r is the diatom bond distance, e is a Cartesian unit
vector e5(ex ,ey ,ez) pointing along the diatom bond suc
that r5 re, and Q5(Q1 ,Q2 ,...,QN) are the positions of the
solute center-of-mass and the N21 rare gas atoms. The or
entational vector e is subject to the constraint e"e51. The 
conjugate momenta to these coordinates are pr , pe 

5(pe ,pe ,pe ), and P5(P1 ,P2 ,...,PN).
x y z 

At this point we wish to treat the diatom bond distan
quantum mechanically while retaining a classical descrip
for all the other degrees-of-freedom. Specifcally, we can
fne a quantum-mechanical Hamiltonian operator in r that 
depends parametrically on e, pe , and Q as 

p̂ 2 
r

ĥ 
r ~e,pe ,Q!5 1Veff~ r̂ ;e,pe ,Q!, ~2.2!

2m 

where the effective potential is 
2pe

Veff~ r̂ ;e,pe ,Q!5 2 1V~ r̂ ,e,Q!. ~2.3!
2mr 

ˆNote that Veff and h are implicit functions of time since e,r 

pe , and Q are classical variables dependent on time. T
adiabatic vibrational states are then obtained by solving
Schrödinger equation for fxed e, pe , and Q 

ĥr ~e,pe ,Q!fn ~r ;e,pe ,Q!5En ~e,pe ,Q!fn ~r ;e,pe ,Q!. 

~2.4! 

The classical Hamiltonian for the remaining degrees
freedom, indexed by the vibrational quantum number, can
taken as 

N 2 

Hn ~e,pe ,Q,P!5 ( 
Pj 

1^fnuĥ ufn& rr 
j 51 2mj 

N 2Pj
5 ( 1En ~e,pe ,Q!, ~2.5! 

j 51 2mj 

where the subscript r indicates integration over only thi
coordinate. In order to ensure that the directional vector e is 
normalized we introduce a Lagrange multiplier,52 so that 

N 2Pj
Hn ~e,pe ,Q,P!5 ( 1En ~e,pe ,Q!1l~e"e21!. 

j 51 2mj 

~2.6! 
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp 
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The resulting classical equations of motion are then give

]Hn 
ė a5

]pea 

]Hn 
ṗ e 52  

a ]ea 
~2.7! 

and 

]Hn ]Hn
Q̇ 

j a5
]Pj a 

Ṗ 
j a52  

]Qj a 
, ~2.8! 

where a5x,y,z and j 51,2,...N. 
In this QC formulation the vibrationally adiabatic eige

functions are known and the forces can be calculated by
Hellmann–Feynman theorem.53 For example, 

f ( j
n 
a 

) ]Hn 
~e,pe ,Q!52  

]Qj a 

]En ~Q! 
52  

]Qj a 

]V~ r̂ ,e,Q! 
52  fn fn , ~2.9!K U U L]Qj a r 

is the force in the a-direction on the j th solvent atom with
the solute in vibrational state n. For the directional vecto
components, there is an additional component proporti
to the Lagrange multiplier 

]V~ r̂ ,e,Q!(n)f ~e,pe ,Q!52 K fnU Ufn L 22leaea ]ea r 

[ f̃ (n)22lea . ~2.10!ea 

Note that we have chosen to include the rotational kine
energy term, p2 /(2mr 2), in the effective potential, Eq. ~2.3!.e 
This is certainly not the only possible approach but it has
advantage that all r -dependent terms are included in the 
brational Schro¨dinger equation, in this case the centrifug
potential is incorporated. Hence, an eigenfunction calcul
in this approach should be closer to the true eigenfunc
i.e., that obtained from a fully quantum-mechanical calcu
tion, along the r coordinate. This means, however, th
evaluating ]Hn /]pe requires some consideration. Ignorin

a 

the action of the orientational kinetic energy on the adiab
eigenfunctions, the Hellmann–Feynman theorem gives 

]Hn ]ĥ 
r 

ge ~ e,pe ,Q!5 5 fn fnK U U La ]pe ]pea a r 

1 
[B(n)5 K fnU Ufn L pe pe . ~2.11! 

mr 2 a a 
r 

Thus, the equations of motion involve an effective rotatio
constant, B(n), obtained from an average over the vibratio
eigenfunction. Finally, for the solvent atom coordinates, 
have simply 

]Hn 
g j a5 5 

]P j a 

P j a 
. 

m j 
~2.12! 
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In the Appendix a rigorous molecular dynamics alg
rithm for integrating these mixed quantum-classical eq
tions of motion is developed. The QC dynamics simulati
results presented in Sec. V use this method. 

III. LANCZOS ALGORITHM 

In the mixed quantum-classical adiabatic molecular 
namics simulation described in Sec. V A the vibratio
states of the diatomic solute must be calculated at each
step and the Hellmann–Feynman forces evaluated. Thu
method is needed to solve the vibrational Schro¨dinger equa-
tion that is effcient, since it is used repeatedly, and su
ciently accurate to obtain the required forces. Furtherm
the approach should ideally be applicable to multidim
sional vibrational problems. However, we can take advan
of the fact that only a few of the vibrational states are usu
of interest and that the vibrational potential, and hence
eigenstates, do not change much from one time step to
next. Given these considerations, we use the iterative L
zos algorithm54 with full reorthogonalization and a speci
choice of the starting vector to obtain the vibrational eig
values and eigenfunctions. Direct diagonalization of the
brational Hamiltonian would suffce for this one degree-
freedom problem, however, the present approach shoul
applicable to vibrational problems involving multip
degrees-of-freedom. 

Briefy, in the Lanczos scheme an initial vector in t
basis v0 ~usually taken as random! is used to build a smalle
(M!N) Krylov space basis set by repeated application
the Hamiltonian matrix: 

$v0 ,H"v0 ,H2"v0 ,H3"v0 ,...,HM 21"v0%, ~3.1! 

where each vector is Gram–Schmidt orthogonalized aga
all previous vectors. Full orthogonalization of the Krylo
vectors is not costly for the small number of vectors requ
for the present applications and it allows us to obtain 
eigenfunctions, which are required to calculate 
Hellmann–Feynman forces, in addition to the eigenvalu
The Hamiltonian matrix in this Krylov basis is then diag
nalized to obtain the eigenvalues. 

This approach has several advantages for vibration
adiabatic dynamics: ~1! It is effcient. The lowest energ
eigenstates, those that are of interest in the study of v
tional spectra, are converged rapidly. The fewer vibratio
states that are required, the lower the computational effo
will be seen in Sec. V that simulations involving the solut
of the vibrational Schro¨dinger equation millions of times ar
possible with the present approach. ~2! It is tunable. The
desired accuracy in the eigenvalues can be specifed an
computational effort scales accordingly. ~3! The result at one
time step can be used to accelerate the calculation at the

al 
l 
e 

time step. Because the vibrational potential ~and hence
eigenfunctions! change little between time steps, the eige
functions obtained at time t can be used to initiate the Lan
zos scheme at time t1dt by using the starting vector 

Nstates1 
v0~ t1dt !5 ( fn ~ t !, ~3.2!

Nstates n51 

where Nstates is the number of vibrational states of interes
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp 
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IV. POTENTIAL-OPTIMIZED DVR 

As emphasized in Sec. III, it is critically important 
optimize the effciency of the calculation of the diatom 
brational states since it must be repeated at least once 
time step and hence thousands or millions of times durin
simulation. One approach to this problem is to reduce
size of the basis set as much as possible without sacrif
accuracy. For the one-dimensional vibrational system con
ered here the basis set size is signifcantly reduced by us
potential-optimized discrete variable representation55,56 ~PO-
DVR!. This is an improvement upon our previous work 
ing a sinc-function DVR basis.1 Originally, PO-DVRs were
developed to optimize the one-dimensional bases use
solving multidimensional vibrational problems with dire
product basis sets. Here we use a PO-DVR for a diffe
purpose: to optimize the one-dimensional basis for repe
solution of the Schro¨dinger equation. The approach is as f
lows. 

A ‘‘raw’’ basis is chosen, consisting of a large number
basis functions. We choose a ~0 to  ̀ ! sinc-function57 discrete 
variable representation58,59 as the raw basis set. In this bas
closed form analytical expressions for the kinetic energy 
trix elements are available57 and the potential energy matr
is approximated as diagonal, with each matrix element e
to the potential energy at the corresponding grid point. 
Hamiltonian matrix in this basis, HRAW , is thus easily evalu
ated. It is necessary to choose a reference potential, the
for which the PO-DVR basis will be optimized. We simp
take the vibrational potential for the diatomic molecule at 
frst step of the QC simulation. There is no reason to bel
that this is the optimum choice but in applications to t
point it has worked quite well. 

Once the Hamiltonian matrix in the raw basis is cal
lated, the vibrational Schro¨dinger equation 

HRAW
Łcn5Encn , n51,2,...,NRAW , ~4.1! 

is solved for the energy eigenvalues, En , and eigenvectors
cn . The eigenvectors corresponding to the lowest NPO en-
ergy eigenvalues are then used as a new, smaller ba
which the matrix of the position operator can be calcula

NRAW That is, if the raw basis functions are denoted by $uw j&% j 51 
with DVR grid points r j , the solution of the Schro¨dinger 

nequation yields the coeffcients cj defned by 

NRAW 
nucn&5 ( cj uw j&. ~4.2! 

j 51 

Then, the matrix elements of the position operator, r̂ , can be 
calculated by 

NRAW 
k l ~r !k,l5^cku r̂ uc l&5 ( cj cj r j , k,l 51,2,...,NPO , 

j 51 

~4.3! 

nwhere we have assumed that the coeffcients cj are real. 
Note that NPO,NRAW ~or ideally NPO!NRAW) so that this
matrix representation of r̂ involves a signifcantly smalle
basis than the raw one. 

The position matrix is then diagonalized, 
Downloaded 06 Jan 2003 to 129.237.102.140. Redistribution subject to A
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rŁ xa5saxa , a51,2,...,NPO , ~4.4! 

giving the NPO eigenvalues sa which are the grid points in
the PO-DVR and NPO corresponding eigenvectors xa which 
are the PO-DVR basis functions. As usual, the potential
ergy matrix in the PO-DVR is approximated as diagon

(VPO)a,b5V(r 5sawith the matrix elements )da,b . The 
kinetic-energy matrix can be obtained by transforming 
matrix in the raw basis, so that 

NRAW NRAW 

TPO!a,b5^xa ~ uT̂ uxb&5 ( ( ^xauw j&^w j uT̂ uw i& 
j 51 i 51 

3^w i uxb&, ~4.5! 

invoking a completeness relation for the sinc-function DV
basis. Note that the kinetic-energy matrix in the raw ba

^w j uT̂ uw i&, is already calculated and, since from the dia
nalization of r we obtain 

NPO 
auxa&5 ( bk uck&, ~4.6! 

k51 

we have 
NPO NPO 

a k^w j uxa&5 ( bk 
a^w j uck&5 ( bk cj , ~4.7! 

k51 k51 

from Eq. ~4.2!. Thus, everything necessary for calculat
the kinetic-energy matrix in the PO-DVR basis is already
hand. 

The use of the PO-DVR reduces the size of the Ha
tonian matrix that must be diagonalized to obtain the vib
tional energy levels and eigenfunctions. In addition, it i
proves the effciency of the calculation by signifcan
reducing the number of potential evaluations ~from NRAW to 
NPO). This may, in some circumstances, represent the gre
savings. One of the important benefts of this approach is
it can be straightforwardly applied to multidimensional s
tems such as polyatomic molecules. Furthermore, as
scribed here the PO-DVR is optimized for the lowest ene
states and thus may be tuned to ft the number of en
states of interest. 

V. SIMULATION RESULTS 

A. Simulation details 

Except where otherwise indicated, the simulations w
carried out with a single N2 solute molecule and 255 argo
solvent atoms in a cubic box of length 22.92 Å ~giving a 
density of 1.41 g/cm3) with periodic boundary conditions
The interaction potential is taken to be a sum of pairw
terms. The N2 potential is taken to be a Morse function wi
D59.755 eV, a52.75 Å21, and r e51.094 Å. The remain-
ing interatomic potentials are of Lennard-Jones form, w
eN537.3 K, sN53.31 Å,9 eAr5124.96 K, and sAr 

53.42 Å. The usual combination formulas are used, e
eN– Ar5AeNeAr and sN– Ar5(sN1sAr)/2. The interactions
are truncated at a radius of 11 Å. 

The simulations are initiated from an FCC lattice. T
system is propagated under completely classical dyna
~with a frozen N2 bond distance! for 25 ps ~with a time step
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp 
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FIG. 1. The instantaneous temperature and total energy are shown
function of time for a mixed quantum-classical simulation of N2(n50) in 
liquid Ar. 

of dt52.5 fs) at T5300 K. The system is then equilibrate
under the mixed quantum-classical dynamics for 10 psdt 
52 fs). In the classical and QC equilibration dynamics, 
velocities are rescaled to keep the temperature within 610 K 
of the desired value for the frst 12.5 and 5 ps, respectiv
The dynamics are then propagated in an NVE ensemble-
ing which the data is collected for analysis. 
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The sinc-function discrete variable representation, 
‘‘raw’’ basis used ~see Sec. IV!, has evenly spaced g
points,57 here the spacing is Dq50.010 79 Å. An energy
cutoff is used in which all grid points at which the potent
energy ~relative to the minimum! is greater than Vcut55 eV  
are discarded. The resulting grid has 60 points. The num
of PO-DVR basis functions is taken as input. 

The convergence of the Lanczos algorithm is determi
by monitoring the n53 vibrational level; if the fractiona
change between Lanczos iterations M and M 11 in this ei-

M11 M 11genvalue, d5(E3 2EM 
3 )/E3 , is less than 1310210 the 

eigenvalue calculation is stopped. 
The instantaneous temperature and total energy are 

ted as a function of time in Fig. 1 for a run of 1 ns (dt 
52 fs) using 15 PO-DVR basis functions. The average t
perature during the run is 86.3 K. Note that the total ene
displays little drift ~a linear ft to the total energy gives 
slope of 2.453931027 a.u./ps). The molecular dynamics in
tegration algorithm given in the Appendix may not be op
mally effcient, however, this demonstrates that long-ti
dynamics are accessible and that the method is stable
reference, with a time step of 2 fs this simulation involv
the calculation of the N2 vibrational states ;1.53106 times. 

B. Adiabatic energy levels 

The three lowest vibrationally adiabatic energy levels
N2 are shown as a function of time in Fig. 2 for the 1 
simulation of N2(n50) in liquid Ar described in Sec. V A
Plots of the energies are given over both the entire run 
of the simulation and a 15 ps interval. 

We focus frst on the gross features of the energy le
over the entire simulation. It is immediately apparent that
ation 
FIG. 2. The vibrationally adiabatic energy levels of N2 ~quantum numbers n50,1,2) are shown as a function of time for a mixed quantum-classical simul
of N2(n50) in liquid Ar. Results are presented for the entire 1 ns simulation run and a 15 ps time interval in the middle of the run. 
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ast 
scale of the energy level fuctuations increases with the
brational quantum number. The n50 vibrational energy
modulations span a range of 6.5 cm21, compared with 13.8
and 33.8 cm21 for the n51 and n52 levels, respectively
Thus, the infuence of the Ar solvent on the vibrational 
ergy increases with the vibrational quantum number n. This 
can be attributed to the larger effective size of the N2 mol-
ecule in the vibrationally excited states. Another feature
the energy level fuctuations is the asymmetry about 
mean. The n50 energy level fuctuations are roughly sym
metric about the mean energy. In contrast, the n51 and 2 
energy levels exhibit signifcant asymmetry with fuctuatio
to higher vibrational energies predominating. This differe
between the n50 and n.0 vibrational states refects the fa
that the solvent is interacting with the n50 vibrational state.
The energies of the higher vibrational states, which co
spond to an effectively larger N2 molecule, are more likely to
be shifted to higher energies by these interactions. 

Using the calculated energy levels presented in Fig
the average N2 fundamental frequency in the simulation 

21 21^v01&52359.8 cm , giving a blue-shift of 1.9 cm rel
tive to the gas phase frequency ~for this potential! of v01 

52357.9 cm21. The ‘‘hot band’’ average frequency 
21 21^v12&52323.5 cm , representing a blue-shift of 2.1 cm

from the gas phase value of 2321.4 cm21. @Note that this
^v12& value is obtained from a simulation of N2(n50), so it 
is not precisely the transition frequency relevant to, e.g.,
hot band in the Raman spectrum.# 

A look at the details of the modulation of the vibration
energy levels is provided by the plots over the 15 ps t
interval, shown in Fig. 2. Specifcally, the fuctuations of 
E1 and E2 levels caused by the Ar solvent occur relatively
phase. In contrast, the modulations of the ground state
ergy E0 do not occur in phase with those of the higher 
brational states. In fact, it appears that the fuctuations inE0 

are to some degree anticorrelated with those of E1 and E2 , 
i.e., E0 peaks where E1 and E2 are at a minimum and vic
versa. The calculated vibrational frequencies as a functio
time can be used to obtain the pure dephasing times, 
using the theoretical approaches of Kubo2 and Oxtoby.9,10 

~For systems like N2 in Ar, the energy relaxation time, T1 is 
much longer than the pure dephasing time so that the 
dephasing time is dominated by pure dephasing, T25T2* .) A 
study of dephasing times using vibrationally adiabatic 
simulations is underway and will be given elsewhere. 

The normalized probability distributions of the 0→1 
and 1→2 transition energies obtained from the 1 ns simu
tion at 85 K with NPO515 are shown in Fig. 3. The anha-
monicity in the vibrational potential is evidenced by t
;36 cm21 shift of E12 to lower energies from E01. The two 
distributions are qualitatively similar. They are both asy
metric, with a single peak that decays more slowly at hig
frequencies. The distribution of E01 can be compared with
that from our previous simulations of nonrotating N2 in Ar at 
150 K.1 An asymmetric distribution was also observed in t
case; that distribution is wider with a full width at half ma

21 21mum or 4.4 cm compared to 3.5 cm for the prese
case. A similar asymmetric distribution in the transition 
Downloaded 06 Jan 2003 to 129.237.102.140. Redistribution subject to A
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FIG. 3. The normalized distributions of the energy gaps E01 ~solid lines! and 
E12 ~dashed lines! are shown, obtained from the 1 ns QC simulation 
N2(n50) in liquid Ar. Results are shown for NPO510 ~squares!, 12  ~tri-
angles!, and 15 ~circles with lines!. 

ergy was found by Herman and Berne in Monte Carlo sim
lations of Br2 in Ar.60 

The transition energy distributions obtained from 1 
simulations at 85 K with NPO510 and 12 are also shown 
Fig. 3 for comparison with the NPO515 results. The distri-
butions obtained for these three sizes of the PO-DVR b
set are very similar; only minor quantitative differences 
observed. This indicates that an accurate solution of the
brational Schro¨dinger equation can be obtained with a ba
consisting of only 10 functions ~see also Sec. V D!. For re
erence, the average frequency ~blue-! shift obtained in the
calculation with NPO510, 12, and 15 is 1.98, 1.92, an
1.93 cm21, respectively. 

C. Nonadiabatic coupling 

In systems for which the vibrational relaxation lifetim
is suffciently short (N2 in Ar is not such a system! the vi-
brational relaxation may be explicitly simulated by a surfa
hopping or classical mapping algorithm. ~However, see Sec
I for a caveat.! However, these approaches require kno
edge of the nonadiabatic coupling, a quantity provided by
mixed quantum-classical approach presented here. Th
brationally nonadiabatic ~kinetic! coupling due to solven
atom j , 

]fnjd ~e,pe ,Q!5 K fn8U Ln8,n ]Qj r 

^fn8u]V~ r̂ ;e,pe ,Q!/]Qj ufn& r 
5 , ~5.1!

En ~e,pe ,Q!2En8 ~e,pe ,Q! 

can be obtained directly since the vibrational wavefuncti
are explicitly and accurately calculated. In Fig. 4 the to
coupling summed over all solvent atoms, given by 

N 
jDn8,n5 ( d n8,n ŁPj /mj , ~5.2! 

j 51 

is plotted as a function of time in the 1 ns simulation at 85
The coupling is roughly symmetric about zero. At the v
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp 
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FIG. 4. The total nonadiabatic ~kinetic! coupling between vibrational state
n50 and  n51 @see Eq. ~5.2!#. 

majority of times in the trajectory, the magnitude of the c
pling is small; at ;84% (;98%) of the time steps the cou
pling is less than or equal to one-tenth ~one-fourth! the larg-
est coupling value. Relatively large values of the coup
are reached infrequently. The distribution of coupling val
may be useful in developing simple models of vibratio
relaxation in condensed phases. 

Note that since this coupling is responsible for vib
tional relaxation, these simulations can provide insight 
the solute–solvent confgurations and motions that lea
the greatest probability of vibrational relaxation. Specifca
the results of these simulations include the solvent atom
sitions and momenta and the solute vibrational wave fu
tion as a function of time. Thus, it may be possible to ga
greater understanding of the origin of large nonadiabatic 
pling ~as well as the modulations of the energy levels! by 
examination of these mixed quantum-classical trajecto
leading to insight into the molecular-level mechanisms
dephasing and vibrational relaxation. This analysis is -
rently underway. 

D. Accuracy and effciency 

The absolute value of the percent error in the frst th
transition energies, E01 , E12, and E23 are shown in Fig. 5 a
a function of time for a 100 ps simulation of N2(n50) at 85 
K with NPO515. In this simulation the vibrational eigenva
ues were recalculated every 200 time steps ~400 fs! using the 
‘‘raw’’ sinc-function DVR basis (NSDVR560) and direct di-
agonalization. The resulting transition energies were take
the ‘‘exact’’ values for calculating the error. The error is e
tremely small for all the transition energies but increases
a factor of ;10 for each increment in the vibrational qua
tum number n. All the transition energies exhibit sharp pea
in the error, fve appear in this time interval. However, 
error in any transition energy is never larger than 
31026%. ~For reference, the errors in the E01 , E12, and E23 

transition energies with NPO510, not shown, are less tha
831027%, 331026%, and 931025%, respectively.!
Thus, the PO-DVR and Lanczos scheme provide a very
curate solution of the vibrational Schro¨dinger equation in
these simulations. 
Downloaded 06 Jan 2003 to 129.237.102.140. Redistribution subject to A
FIG. 5. The percent error ~see text! in the transition energies, E01 ~solid 
line!, E12 ~dashed line!, and E23 ~dot–dashed line! for a simulation of 
N2(n50) in liquid Ar. 
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The key measure of the computational effort in solv
the vibrational Schro¨dinger equation is the number of Lan
zos iterations required to converge the eigenvalues. In t
ns simulation of N2(n50) at 85 K with NPO515 the aver-
age number of Lanczos iterations required was 6.1 and
largest number of iterations at any step was 8. For the 
dimensional vibrational problem examined here the Ham
tonian matrix is not sparse as it would be for a system w
multiple degrees-of-freedom. Thus, no sparsity of the Ham
tonian matrix is exploited even though the iterative Lanc
algorithm is designed to take advantage of it ~and a DVR 
basis in multiple degrees-of-freedom provides it!. This fea-
ture of the present approach means that the extension t
atomic and polyatomic ~with approximations! solute mol-
ecules is straightforward and feasible. While solution of 
present one degree-of-freedom problem by direct diago
ization of the vibrational Hamiltonian matrix is possible,
will be ineffcient and likely not feasible for a multipl
degree-of-freedom vibrational problem. This is a key m
vation for the present approach. Testing of this method
multiple degrees-of-freedom vibrational problems is c-
rently underway. 

VI. SUMMARY 

An accurate, effcient, generalizable method for carry
out mixed quantum-classical dynamics is presented. Spe
cally, a Lanczos scheme, with careful choice of the star
vector, is used to calculate the vibrationally adiabatic ene
levels at each step in a QC trajectory. The basis set si
reduced by using a potential optimized discrete variable 
resentation. Furthermore, a stable molecular dynamics a
rithm is presented for integrating the mixed quantu
classical equations of motion. 

This approach is tested on the problem of an N2 mol-
ecule with a quantum-mechanical vibration and class
translation and rotation dissolved in a classical Ar solve
The QC molecular dynamics were simulated for 1 ns and
adiabatic vibrational energy levels and vibrationally nonad
batic coupling calculated as a function of time. These qu
tities are important in studies of ~pure! vibrational dephasing
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp 

http://ojps.aip.org/jcpo/jcpcr.jsp


1066 J. Chem. Phys., Vol. 118, No. 3, 15 January 2003 Ward H. Thompson 

ica
tu
 
ad
je
th
n
le

r
sa
 t
ad
te

rl
ss
e
in
f 
e

le

 
l

ce 
. 

al 
lcu-
ing 

e is 
 
y 

ince 

era-

i-
 

 

and vibrational relaxation. The mixed quantum-class
method presented here may be applied not only to s
these problems but also spectroscopy2,8,10,11,13 and reaction
dynamics34,35,40–42 in condensed phase systems. A key 
vantage is the physical insight available from the QC tra
tory consisting of solvent positions and momenta and 
vibrational wave function as a function of time. In additio
it can be straightforwardly applied to solutes with multip
vibrational degrees-of-freedom. 
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APPENDIX: MOLECULAR DYNAMICS ALGORITHM 

Standard molecular dynamics algorithms, e.g., the Ve
integrator, cannot be straightforwardly applied to the cla
cal Hamiltonian in Eq. ~2.6! due to the presence of th
p2/(2mr 2) term; the Hamiltonian involves terms mixed e 
the momenta and coordinates. There are a number o
proaches for obtaining a stable integration algorithm, h
we present one based on the implicit Euler method.61 For 
equations of motion given by 

q̇5g~ p,q! ṗ5 f ~ p,q!, ~A1! 

the Euler method is given by61,62 

qt1dt5qt1dtg@ pt ,qt1dt#, ~A2! 

pt1dt5pt1dt f @ pt ,qt1dt#, ~A3! 

and also has an associated adjoint 

pt1dt5pt1dt f @ pt1dt ,qt#, ~A4! 

qt1dt5qt1dtg@ pt1dt ,qt#. ~A5! 

An algorithm can be obtained by combining the Eu
method for t→t1dt/2 and its adjoint for t1dt/2→t1dt. 
This gives 

dt 
qt1dt/25qt1 g@ pt ,qt1dt/2#, ~A6!

2 

dt 
pt1dt5pt1 

2 
$ f @ pt ,qt1dt/2#1 f @ pt1dt ,qt1dt/2#%, ~A7! 

dt 
qt1dt5qt1dt/21 

2 
g@ pt1dt ,qt1dt/2#. ~A8! 

In this case, from Eqs. ~2.7!–~2.12! this algorithm gives the
following procedure ~suppressing the vibrational state labe!. 
First, advance the coordinates from t to t1dt/2 

dt Pj a~ t ! 
Qj a~ t1dt/2!5Qj a~ t !1 , ~A9!

2 mj 

dt 
ea~ t1dt/2!5ea~ t !1 B~ t1dt/2!pe ~ t !. ~A10!

2 a 
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Note that Eq. ~A10! must be solved self-consistently sin
the effective rotational constant B(t1dt/2) as defned in Eq
~2.11! depends on the coordinates e(t1dt/2) and Q(t 
1dt/2) through the eigenfunction ufn(e,pe ,Q)&. The solu-
tion of Eq. ~A10! can be obtained by solving the vibration
Schrödinger equation at these updated positions and ca
lating the effective rotational constant using the result
eigenfunctions. This provides a new estimate of e(t1dt/2) 
which can be compared with the input and this procedur
repeated until the input and output e(t1dt/2) are the same to
within a specifed tolerance ~as measured, for example, b
De5ueoutput(t1dt/2)2einput(t1dt/2)u2). 

Next, advance the momenta a full time step from t to t 
1dt: 

dt 
Pj a~ t1dt !5Pj a~ t !1 $ f j a@pe ~ t !,P~ t !,

2 

e~ t1dt/2!,Q~ t1dt/2!] 1 f j a@pe ~ t1dt !, 

P~ t1dt !,e~ t1dt/2!,Q~ t1dt/2!] %, ~A11! 

dt 
pe ~ t1dt !5pe ~ t !1 $ f̃ @pe ~ t !,P~ t !,e~ t1dt/2!,ea a 2 a 

Q~ t1dt/2!] 1 f̃ e @pe ~ t1dt !,P~ t1dt !, 
a 

e~ t1dt/2!,Q~ t1dt/2!] %22dtlea~ t1dt/2!. ~A12! 

These equations also must be solved self-consistently s
the forces f j a and ̃f depend upon pe through the vibra-ea 

tional eigenfunction. This is done using an analogous it
tive approach as described for solving Eq. ~A10! with two 
measures of convergence taken as Dp 5upe, input(t1dt)

e 

2pe,output(t1dt)u2/upe,output(t1dt)u2 and DP5uPinput(t1dt) 
22Poutput(t1dt)u2/uPoutput(t1dt)u . The method for deter-

mining l is given below. 
Finally, update the coordinates from t1dt/2 to t1dt 

dt Pj a~ t1dt ! 
Qj a~ t1dt !5Qj a~ t1dt/2!1 , ~A13!

2 mj 

dt 
ea~ t1dt !5ea~ t1dt/2!1 B~ t1dt/2!pe ~ t1dt !.

2 a 

~A14! 

These equations are explicit. 
We can use Eq. ~A14! to determine the Lagrange mult

plier l by requiring that ue(t1dt)u251. Defning the vector

dt 
e0~ t1dt !5e~ t1dt !ul505e~ t1dt/2!1 B~ t1dt/2!

2 

3@pe ~ t !1dt f̃e ~ t1dt/2!#, ~A15! 

we have 

e~ t1dt !5e0~ t1dt !2ldt2B~ t1dt/2!e~ t1dt/2!. 
~A16! 

It is not hard to show then that requiring that e(t1dt) is
normalized leads to a quadratic equation in l with the solu-
tion 
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D N1/2~N021! 1/2 

l5 12 12 , 
dt2N1/2B~ t1dt/2! H F D2 G J 

~A17! 
2where D5e0(t1dt)Łe(t1dt/2), N05ue0(t1dt)u , and 

2N1/25ue(t1dt/2)u . Note that the root of the quadratic equ
tion with the negative sign is chosen so that when N051, 
l50. This expression is used to calculate l in Eq. ~A12!; 
note that it only involves quantities at t1dt/2 except for 
pe(t1dt), which is obtained iteratively. 

We note that for all the simulations presented here,
iterative solutions of both Eqs. ~A10! and ~A12! are com-
pleted in a single cycle. This may not be true for systems
exhibit stronger solute–solvent coupling. 
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