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An effcient implementation of the quantum mechanical transition state theory recently proposed by 
Hansen and Andersen @J. Chem. Phys. 101, 6032 ~1994!; J. Phys. Chem. 100, 1137 ~1996!# is 
presented. Their method approximates the fux–fux autocorrelation function by using short-time 
information to ft an assumed functional form ~with physically correct properties!. The approach 
described here exploits the low rank of the half-Boltzmannized fux operator, thereby facilitating 
application to reactions involving many degrees of freedom. In addition, we show how the quantum 
transition state theory can be used to obtain tunneling corrections within the framework of more 
traditional transition state theory approaches, i.e., those making an assumption of separability. 
Directions for possible improvements of the theory are discussed. © 1999 American Institute of 
Physics. @S0021-9606~99!02009-7# 
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I. INTRODUCTION 

Classical transition state theory1 ~TST! today remains as
one of the most powerful techniques for computing ther
rate constants for chemical reactions, particularly for lar
systems. Its usefulness is due to a combination of facto
is easy to implement. There is a clear physical picture of
approximation invoked, i.e., the assumption that no traje
ries recross the transition state.2 It provides a rigorous uppe
bound to the exact classical rate. And, fnally, it yields ac
rate rate constants for systems obeying classical mech
and exhibiting direct dynamics. 

However, often one is interested in chemical reacti
where classical mechanics is not a valid description, 
light atom (H) transfer reactions which can proceed by tu
neling. Thus, a quantum mechanical transition state th
with properties analogous to those listed above would b
immense value. Despite the efforts of many workers,3–9 no 
theory satisfying all of these requirements has been de
oped. One problem is that no meaningful upper bound to
exact quantum mechanical rate has been found. A large
fculty is that of translating the fundamental assumption
classical transition state theory, ‘‘no recrossing trajectorie
into a quantum mechanical framework. Because of this 
biguity many different quantum mechanical transition st
theories have been proposed. While the ultimate goal 
unique quantum mechanical analogue of classical transi
state theory has not been achieved, there are several qu
mechanical transition state theories which provide accu
methods for calculating thermal rate constants based o
assumption of ‘‘direct dynamics’’ ~yielding a signifcant re-
duction in the computational effort!. 

Recently, Hansen and Andersen proposed a quan
mechanical transition state theory8,9 based on the fux–fux
autocorrelation function which is capable of accurately r
resenting tunneling ~including nonseparability!. The fux–
fux autocorrelation function provides a direct route ~i.e., 
with no reference to state-selected or energy-depen
0021-9606/99/110(9)/4221/8/$15.00 422
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quantities! to the exact thermal rate constant for a chem
reaction,10,11 

1 ` 

k~T!5 E ~ t !dt, ~1.1!Cf fQr ~T! 0 

where Qr(T) is the reactant partition function per unit vo
ume and 

2bĤ /2F 2bĤ /2 iĤ t/\F 2 iĤ t/\#Cf f  ~ t !5tr@e ˆ e e ˆ e ~1.2! 

ˆis the fux–fux autocorrelation function. Here H is the 
Hamiltonian, F̂ is the fux operator defned for a dividin
surface separating reactants and products, and b51/kbT 
with kb as Boltzmann’s constant. The transition state the
of Hansen and Andersen8,9 uses short time information abou
Cf f  (t) to obtain an approximation to the rate consta
Namely, the values of the correlation function and its sec
derivative at zero time are used to determine paramete
an assumed functional form ~possessing the desired prope
ties!. In this paper we show how this TST can be effcie
implemented to make it applicable to large chemical s
tems. We also outline how it can be used to obtain a tun
ing correction for more traditional ~i.e., separable! TSTs. In 
addition, it can be utilized to improve the separability a
proximation in such cases by explicitly including seve
strongly coupled degrees of freedom. 

As has been shown previously, the Boltzmannized 
operator, 

ˆ ~ 2bĤ /2F̂ e2bĤ /2F b!5e , ~1.3! 

is of low rank ~i.e., it has only a small number of nonze
eigenvalues!.12 This is true because the fux operator in
single dimension has only two nonzero eigenvalues ~in a 
fnite basis representation!, equal in magnitude and opposi

13–15 Inin sign ~corresponding to forward and backward fux!. 
a multidimensional case the low rank is preserved by 
Boltzmann factor which limits the contribution from the d
grees of freedom parallel to the dividing surface to state
lower energy. ~Naturally the number of these states increa
1 © 1999 American Institute of Physics 

https://0021-9606/99/110(9)/4221/8/$15.00
https://eigenvalues!.12
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with temperature.! Thus, if the dividing surface is placed 
the transition state, the number of nonzero eigenvalue
F̂(b) is approximately twice the number of thermally acc
sible states of the activated complex at temperature T. This 
fact has previously been exploited by Miller a
co-workers12,16–18 and Manthe and co-workers19,20 in the cal-
culation of exact thermal rate constants for gas-phase ch

18,21!.cal reactions ~including recombination processes Si
nifcant progress in this area has also been made by L
and co-workers.13,14,22,23 

Section II describes the implementation of the quan
TST of Hansen and Andersen, including how the low ran
the half-Boltzmannized fux operator can be used to adv
tage. An illustrative application to the D1H2 reaction is dis-
cussed in Sec. III. The separable transition state theory
proach is outlined in Sec. IV and the tunneling correctio
derived in terms of Cf f(t). Section V describes the applic
tion of the theory to a one-dimensional double well poten
bilinearly coupled to a harmonic bath. The calculated 
constants are presented in Sec. V B and comparison is 
to exact results.24 Finally, Sec. VI presents concluding r
marks and some directions for future improvements. 

II. TRANSITION STATE THEORY APPROXIMATION 

The transition state theory of Hansen and Andersen 
the values of Cf f(0) and Cf f(0) ~where each dot implies ¨ 

time derivative! to determine the parameters in an assum
functional form for Cf f(t). Specifcally, they suggest tw
possibilities.8,9 The frst is the fux-fux autocorrelation func
tion for the parabolic barrier11 

kTpb~ \bvb/2!Cf f  t !5 ~ 
h 

vb sin~b\vb/2!cosh~vbt ! 
2bEb,3 e ~2.1! 

vbt !#3/2@sin2 ~b\vb/2!1sinh2 ~ 

where the two adjustable parameters are vb , the barrier fre-
quency, and Eb , the barrier height. The second is a fo
based on the Pade´ approximant to the function
d ln@Cff(z

1/2)#/dz giving the functional form for the correla
9,25tion function as 

bt2 
aePA ~ t !5 , ~2.2!Cf f  

@ t21b2\2/4#3/2 

with 

a5~b\/2!3Cf f~0! ~2.3a! 

and 

¨6 C 0!f f~  
b5 1 ~2.3b! 

~b\!2 2Cf f~0!  

as the adjustable parameters. Note that Eq. ~2.2! has the cor-
rect properties as a function of complex time9 ~i.e., it is ana-
lytic in the same regions as the true Cf f(t) and has singu-
larities in the proper places!. Both correlation function forms
have the correct short time behavior.26 
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In Secs. III and V we implement the transition sta
theory of Hansen and Andersen using the form for the 
relation function given in Eq. ~2.2!. We choose this form
rather than the parabolic barrier correlation function of 
~2.1! because it is more robust, i.e., it is not always poss
to obtain the parameters vb and Eb .9 Values for a and b in 
Eq. ~2.2! can always be found but may not always be me
ingful ~see Sec. V!, however this is reasonably rare. 

The expressions in Eqs. ~2.1! and ~2.2! for the correla-
tion function are positive for all times and therefore can
considered to represent direct dynamics in the spirit of tran
sition state theory. @Note that, Eq. ~1.1!, negative values fo
the correlation function diminish the rate constant.# At the 
same time, this naturally limits the accuracy of the resul
rate as no negative lobe in the correlation function ~due to 
‘‘recrossing’’ of the fux dividing surface! can be repro-
duced. This implies the usefulness of these methods wi
limited to reactions where there is not signifcant recross
of the transition state ~as would be expected!. Using only th
zeroth and second derivatives of Cf f(t) at  t50, one has no
choice but to choose a monotonically decaying functi
That is, these quantities give information about the ini
value of the correlation function and its initial rate of dec
More derivatives are necessary to obtain meaningful in
mation about recrossing ~i.e., to describe a negative lobe 
the correlation function!. Hansen and Andersen applied t
quantum TST to the symmetric and asymmetric Eckart 
riers as well as a parabolic barrier linearly coupled to a 
monic oscillator and found quite good agreement.8,9 How-
ever, the method did not always give a rate larger than
exact value and so does not represent an upper bound.

The fux–fux correlation function, Eq. ~1.2!, can be ex-
14,22pressed ~in a form convenient for the present purpose! as 

iĤ t/\F 2 iĤ t/\#,Cf f~ t !5tr@ F̂~b/2!e ˆ ~b/2!e ~2.4! 

where F̂(b/2) is the half-Boltzmannized fux operator, 

2bĤ/4F 2bĤ/4F̂~b/2!5e ˆ e , ~2.5! 

which, like F̂(b), is of low rank.16,20 The critical quantities
required for the transition state theory are Cf f(0) and 
¨ Cf f(0). Note that all the odd derivatives are zero sin
Cf f(t) is an even function of time. @See the Appendix for a
comparison of using Eqs. ~1.2! and ~1.3! vs Eqs. ~2.4! and 
~2.5! for the current problem.# 

Here we show how the low rank of F̂(b/2) can be used
to effciently obtain Cf f(0) and Cf f(0). The frst step is to ¨ 

obtain the eigenstates of the half-Boltzmannized fux op
tor 

F̂~b/2!um&5 f mum& ~2.6! 

with nonzero eigenvalues. This can be accomplished u
an iterative Lanczos scheme.27,28 This basis of eigenstate
can then be used to evaluate the trace required to o
Cf f(t).

16,20 Then the fux–fux autocorrelation function 
zero time is 

https://behavior.26
https://a5~b\/2!3Cff~0!~2.3a
https://results.24
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Cf f~0!5tr$F̂~b/2!F̂~b/2!%, 

5( ^muF̂~b/2!F̂~b/2!um&, 
m 

25( f . ~2.7!m 
m 

The second derivative evaluated at t50 can be straightfor-
wardly calculated as 

2i 
C̈ 

f f~0!5  tr$F̂~b/2!@Ĥ,@Ĥ,F̂~b/2!##%,S D\ 

2 
ˆ 252  f m f m ̂ muH um&  

\2 (m F  
22(  f m8u^m8uĤum&u G . ~2.8! 

m8 

It is clear from these expressions that eigenstates withf m 

.0 will not contribute as both Cf f(0) and Cf f(0) consist¨ 
2only of quantities proportional to f m or f mf m8 . It is also 

noteworthy that the only work required to obtain Cf f(0) and 
Cf f(0) once the eigenstates are known is a single mult¨ 

cation of the Hamiltonian onto each eigenvector (Ĥum&) and 
some vector products. 

At this point it is useful to consider the computation
savings realized in this approximate approach. In a fully 
orous calculation of Cf f(t) to obtain the rate, each eigensta
of F̂(b/2) must be propagated in real time up to t/2, where 
t is the time in which Cf f(t) decays to zero.20 Conversely, 
Eqs. ~2.7! and ~2.8! require no time propagation, but only
single Hamiltonian multiplication on each eigenvector. Ex
calculations have been carried out for several reactions
volving three and four atoms,12,16–20 indicating that the tran-
sition state theory should be applicable to quite large 
tems. 

We note that a general expression for the derivative
the fux–fux autocorrelation function evaluated at t50 can 
be found, giving the Kth derivative as 

K 

~K !Cf f  ~0!5  (  f mf m8  (  Pk
K^mK2kum8&^m8umk&, ~2.9! 

k50m,m8 

ˆ kwhere umk&5H um& and 

K!K5~21!kPk . ~2.10!
k! ~K2k!! 

~Note that no more than K/2 multiplications of the Hamil-
tonian onto each eigenvector is required since for even k 

^m8umk&5^mk8/2umk/2&, ~2.11! 

and an analogous, though less symmetrical, division ca
made for odd k.! 

III. THE D1H2 REACTION 

We now consider an application of the quantum tra
tion state theory of Hansen and Andersen as describe
li-
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FIG. 1. Flux–fux autocorrelation function for the D1H2 reaction at T 
5300 K for even parity. The quantum transition state theory result ~dashed 
line! using Eq. ~2.2! is compared with the exact correlation function ~solid 
line!. The units of the correlation function are ~atomic units of time!22. 

Sec. II in order to illustrate its utility for multidimension
systems. Specifcally, we calculate the thermal rate cons
for the D1H2 reaction for zero total angular momentum J 
50). This provides a useful test as the reaction is know
be direct and the quantum transition state theory is there
expected to give accurate rates. 

In this section we compare rate constants for the D12 

reaction obtained from the quantum transition state the
approach to the exact rate constants obtained by a full c
lation of the fux–fux autocorrelation function. In this wa
ambiguities arising from the use of different potential ene
surfaces and/or theoretical approaches are eliminated an
approximation of Cf f(t) is directly tested. The specifcs o
the computational approach for calculating the exact 
constant for the D1H2 reaction has been given in deta
elsewhere.29 The implementation is the same for the qua
tum transition state theory except for the approximations
scribed in Sec. II. The approximate correlation function
taken to be of the form given in Eq. ~2.2!. 

Figure 1 shows the fux–fux autocorrelation function 
the D1H2 reaction ~for even parity! at T5300 K obtained
exactly and from the transition state theory approximation
Sec. II. The two correlation functions are in good agreem
Note that the approximate correlation function is not gre
than the exact correlation function at all times, but for t
temperature does yield a thermal rate constant larger tha
exact result. The exact correlation function does beco
slightly negative around 15 fs, while the transition st
theory correlation function decreases monotonically and
mains positive at all times. 

An Arrhenius plot for the D1H2 reaction for total angu-
lar momentum J50 is shown in Fig. 2 at T5300– 1500 K. 
The rate constants obtained from an exact evaluation o
fux–fux correlation function are compared with those fro
the quantum transition state theory. For reference, the e
rate constants agree to within 2.5% with the previous e
calculations of Mielke et al.30 over this temperature

https://elsewhere.29
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FIG. 2. Arrhenius plot for the D1H2 reaction for zero total angular momen
tum (J50). The rate constants obtained from an exact evaluation o
fux–fux autocorrelation function ~solid line! and the quantum transition
state theory result ~flled circles! are shown. 

range. The agreement between the approximate and 
rates is excellent; the rates are within 5% at all temperat
shown. It is interesting to note that the transition state the
rate constants are smaller than the exact results for T>900 
K. It would be interesting to examine the variational nat
of the quantum transition state theory by ‘‘optimizing’’ th
fux dividing surface to minimize the rate constant.8,9 

IV. SEPARABLE TRANSITION STATE THEORY 

It is instructive to examine the relation of the quant
mechanical transition state theory described in Sec. II to
‘‘conventional’’ formulation. The conventional quantu
transition state theory is given as the quantized version o
classical TST rate, 

kbT Q‡ ~ T!TST 2bEb,kQM ~T!5G~T! e ~4.1!
h Qr ~T! 

where Qr(T) and Q‡(T) are the ~quantum mechanical! par-
tition functions for the reactants and the activated comp
respectively, Eb is the barrier height, and G(T) is a factor 
accounting for the effects of tunneling, the tunneling corr
tion. Note that this formulation of quantum TST involves 
assumption of separability between the reaction coordi
~i.e., the normal mode coordinate at the transition state 
an imaginary frequency! and the remaining degrees of fre
dom at the transition state; Q‡(T) is calculated in the degree
of freedom orthogonal to the reaction coordinate at the t
sition state. Typically G(T) is a one-dimensional tunnelin
correction factor, though it sometimes includes some ef
of the curvature of the reaction path.4 

Now consider the thermal rate constant as obtained f
the fux–fux autocorrelation function. If we assume sepa
bility between the reaction coordinate, which we denote bs, 
and the bath at the transition state such that the Hamilto
can be written as 

Ĥ5Ĥ 
s1Ĥb~s5s0 !, ~4.2! 
he 
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ry 

e 
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where s5s0 defnes the fux dividing surface then 

1 ` 

k~T!5 Cf f~ t !dt ,EQr ~T! 0 

1 ` 
2bHb~ s5 trb@e s0!# E ~ t !dt ,Cf fQr ~ T! 0 

Q‡~ T! ` 
s5 ~ t !dt. ~4.3!E Cf fQr ~T! 0 

We have used the fact that Ĥb(s0) commutes with Ĥ and F̂,s 

and 

2bHb~Q‡ ~T!5trb@e s0!#. ~4.4! 

The fux–fux autocorrelation function Cs
f f(t) is that for the 

reaction coordinate alone, i.e., Eq. ~1.2! @or Eq. ~2.4!# with 
the full Hamiltonian replaced by Ĥ 

s . Equation ~4.3! can be 
written in the form of Eq. ~4.1! with the tunneling correction
given by 

h ` 
sbEbEG~T!5 e ~ t !dt. ~4.5!Cf fkbT 0 

It is worth noting that for the free particle ~with Eb50), for 
which the correlation function is 

kbT ~\b/2!2 

~ t !5 , ~4.6!Cf f
f p  

h  \b/2!2#3/2@ t21~ 

one obtains G(T)51. For the case of a parabolic barrie
with Cf f(t) given by Eq. ~2.1!, 

\bvb/2
G~T!5 , ~4.7!

sin~\bvb/2! 

which is the exact result previously obtained by Miller.3 ~The 
standard Wigner tunneling correction31 is the expansion of
this expression to lowest order in \.! Naturally, the quantum
TST of Hansen and Andersen obtains the correct resul
the case of the parabolic barrier using Eq. ~2.1!. 

The separable quantum transition state theory given
Eq. ~4.3! may be calculated with the exact Cs

f f(t) or with 
s (t) replaced by its approximate form within the TST Cf f  

Hansen and Andersen. It is important to note that Eq. ~4.5! 
cannot always be applied using the exact correlation func
since the rate in the reaction coordinate alone is not alw
well-defned. For example, the fux–fux autocorrelati
function for the one-dimensional double well potential co
sidered in Sec. V oscillates indefnitely and thus there is
a well defned rate for the reaction coordinate alone. ~How-
ever, in such cases the quantum TST of Hansen and An
sen canstill provide a useful evaluation of the rate, as will 
seen shortly.! When the double well is coupled to a harmon
bath, which is the system one wishes to describe, there
be a well defned rate as the bath can withdraw energy f
the reaction coordinate. The system can thereby relax 
the product well, eliminating repeated recrossing of the tr
sition state. 

The assumption of separability at the transition st
made in Eq. ~4.2! could equally well be carried out whil
including several coordinates in Ĥ 

s . The separability ap-
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proximation can thereby be improved since all the coo
ˆnates in H are treated fully coupled in the quantum trans 

tion state theory of Hansen and Andersen. 

V. DOUBLE WELL COUPLED TO A HARMONIC BATH 

A. Description of the problem 

To illustrate the quantum mechanical transition st
theory we apply it to the problem of a symmetric double w
potential bilinearly coupled to a harmonic bath. This probl
has been studied in great detail by a large numbe
workers32,33 and, importantly for the present purpose, ex
calculations for the rate constant have been carried ou
Topaler and Makri24 using the quasiadiabatic propagat
path integral approach with an infuence functional. T
Hamiltonian can be written as 

2 2 4p̂ x 1 2 ̂ 21 
m vb ˆ 4Ĥ5 2 mvbx x

2m 2 16Eb 

N p2 
j 1ˆ 

2 2ˆ1 ( F 1 q Gmjv j j
j 51 2mj 2 

N N 2 

ˆ ˆ 22 ( cjqj x̂1 ( 
cj 

x , ~5.1!
2j 51 j 51 2mjv j 

where vb is the barrier frequency and the v j are the frequen-
cies of the bath. The last term is a renormalization fa
which ensures that the barrier height, Eb , remains the sam
as the system–bath interaction, defned by the coupling 
stants $cj%, changes. We consider the parameter values in
‘‘DW1’’ potential of Topaler and Makri24 with vb5500 

21 21cm , Eb52085 cm , and m51837.15 a.u. ~the mass of a
hydrogen atom!. 

The characteristics of the bath are encompassed in
spectral density, J(v), via the relation34 

2 

J~v!5 
p

( 
cj 

d~v2v j !. ~5.2!
2 j mjv j 

Here we assume an Ohmic spectral density with an expo
tial cutoff, 

2v/vJ~v!5hve c, ~5.3! 

where h is a measure of the system–bath interaction an
related to the friction of the harmonic bath and vc is the 
cutoff frequency ~taken to be 500 cm21). We represent the
bath as a set of ~300! oscillators with equally spaced discre
frequencies with a maximum frequency of 5vc . Then, the
coupling constant for a given oscillator is given by the re
tion 

2cj 2 
2v/v5 hv je cDv, ~5.4! 

mjv j p 

where Dv is the frequency spacing. 
The reaction coordinate is obtained by solving for 

normal mode coordinates of the potential in Eq. ~5.1! and is 
given by the mode with an imaginary frequency. The b
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modes are then the remaining normal mode coordinates
approximate the reaction coordinate potential as a symm
double well such that 

2 4p̂ s 1 2 
v‡

Ĥ 5 2 v‡ŝ21 ŝ4, ~5.5!s 2 2 16Eb 

where v‡ is the absolute value of the imaginary norm
mode frequency of the ~mass-weighted! reaction coordinate
s. The bath Hamiltonian is given by 

N P2 1ˆ 
2Ĥ j 

1 2Q̂ , ~5.6!b5 ( F V j j G 
j 51 2 2 

where the V j are the bath mode frequencies correspondin
the ~mass-weighted! coordinates Qj , obtained from the nor-
mal mode analysis at the transition state. In defning the
action coordinate to be the imaginary frequency norm
mode coordinate we are, in effect, making a choice of 
fux dividing surface designed to improve the accuracy of
transition state theory. We have not carried out an exp
optimization of the dividing surface, as suggested by Han
and Andersen,8,9 which may improve the accuracy of the ra
constants. 

The classical Hamiltonian corresponding to Eq. ~5.1!, 
with a system coordinate bilinearly coupled to a harmo
bath, is equivalent to the system coordinate obeying a 
eralized Langevin equation.35 Grote and Hynes have ob
tained a simple and elegant expression for the rate con
for this problem, using a parabolic approximation to 
barrier.36 Pollak has shown that their approach is equival
to classical transition state theory applied in the normal m
coordinates of the transition state.37 Quantum mechanical ef
fects can be included in the Grote–Hynes theory rate c
stants by a correction factor derived by Wolynes.38 

Finally, we note some computational details. In calcu
¨ ing Cf f(0) and Cf f(0) by Eqs. ~2.7! and ~2.8!, respectively,

a sinc-function discrete variable representation basis39 is 
used for the one-dimensional double well potential. The 
operator is used in the commutator form, 

i 
F̂5 @Ĥ 

s ,h~s!#. ~5.7! 
\ 

Four Lanczos iterations are performed to obtain the non
eigenvalues of F̂(b/2) in Eq. ~2.5! and their corresponding
eigenvalues. The ratio of partition functions, Q‡(T)/Qr(T), 
in Eq. ~4.3! is obtained using a normal mode analysis 
both the reactants and the activated complex. 

B. Results and discussion 

Here we present the results for the double well bilinea
coupled to a harmonic bath using the method describe
Secs. II and IV. 

Following Topaler and Makri,24 we report the rates fo
the double well potential bilinearly coupled to a harmo
bath as the transmission coeffcient 

k~T! 
k~T!5 . ~5.8!

kTST~T! 

https://Wolynes.38
https://state.37
https://barrier.36
https://equation.35
https://m51837.15
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FIG. 3. Transmission coeffcient for the double well potential bilinea
coupled to a harmonic bath at T5300 K vs the coupling strength paramet
h/(mvb). Results are shown for the present method as given in Eq. ~4.3!, 
~solid line!, the parabolic barrier tunneling correction, ~dashed line!, and the
exact results of Topaler and Makri ~Ref. 24!, ~solid circles!. 

The primitive transition state theory rate, kTST(T), is given 
by 

v0 2bEb,kTST~T!5 e ~5.9!
2p 

where v0 is the frequency in the reactant well (v05707 
cm21 for the parameters used here!. 

Transmission coeffcients are presented for the appro
described in Sec. IV, specifcally the rate given by Eq. ~4.3!. 
The correlation function for the reaction coordinate alo

s (t) is obtained using the Pade´ approximant form ofCf f  
Hansen and Andersen,9 Eq. ~2.2!, for the correlation func

¨ tion. The values of Cf f(0) and Cf f(0) are obtained from
Eqs. ~2.7! and ~2.8!, respectively and used to determine 
parameters a and b via Eqs. ~2.3!. For comparison we hav
carried out calculations using the parabolic tunneling cor
tion from Eq. ~4.1! using Eq. ~4.7! for G(T). 

Figure 3 shows the transmission coeffcient at T5300 K 
vs the parameter h/(mvb) governing the coupling strengt
@see Eqs. ~5.3! and ~5.4!#. The exact calculations of Topal
and Makri24 and the results obtained using the traditio
parabolic barrier tunneling correction are plotted for co
parison. It is immediately obvious that the transition st
theory ~with either tunneling correction! does not reproduce
the correct behavior of the transmission coeffcient for sm
coupling. This regime is dominated by recrossing effect
the small coupling inhibits the relaxation of the system in
product well resulting in repeated recrossing of the transi
state. Since the transition state theory makes no accou
for recrossing dynamics, it severely overestimates the 
for small coupling. However, for intermediate to large co
pling @h/(mvb) greater than ;1], the transition state theor
correctly ~and quantitatively! predicts the decrease of the ra
with increased coupling. This is because the dynamics
this range of coupling strength is direct, i.e., it is charac
ized by little recrossing of the transition state. The transm
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FIG. 4. Same as Fig. 3 but for T5200 K. 

sion coeffcient obtained from Eq. ~4.3! is slightly larger than
that obtained from the parabolic barrier tunneling correct
by less that 5%. 

The transmission coeffcient is plotted vs the coupl
strength parameter h/(mvb) at a lower temperature, T 
5200 K, in Fig. 4. Again the transition state theory is s
nifcantly in error for small coupling but reproduces t
transmission coeffcient for larger coupling @h/(mvb) 
greater than ;0.5] quite well. The present method and t
parabolic tunneling correction are in very good agreem
over the entire range of coupling strength. 

Finally, Fig. 5 plots the logarithm of the transmissi
coeffcient as a function of h/(mvb) at  T5100 K. Note that
at this temperature the exact transmission coeffcient exh
a turnover ~such as those observed in Figs. 3 and 4! at expo-
nentially small coupling24 and so it does not appear in th
data. At this low temperature the parabolic tunneling corr
tion does not give a useful rate for small coupling @where T 
is below the crossover temperature, i.e., defned as tha
which Eq. ~4.7! diverges, given by Tc5\v‡ /(2pkb)]. How-

FIG. 5. Same as Fig. 3 but for T5100 K and here the logarithm of th
transmission coeffcient is plotted. 
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om-
ever, because the present approach for obtaining the tu
ing correction is based on a physically realistic o
dimensional potential it does give meaningful rates in thi
regime. The present transition state theory approach g
transmission coeffcients in reasonable agreement with
exact calculation over the entire range of coupling. The
sults from the parabolic barrier tunneling correction 
shown for larger values of the coupling and are in g
agreement with the present method. 

It is instructive to consider how the present method co
pares to other quantum transition state theory approac
Topaler and Makri24 compared their exact results with tho
from Grote–Hynes theory36 with a quantum correction38 and 
centroid density theory.6 At T5300 and 200 K, these ap
proaches signifcantly overestimate the rate constants
small coupling, as does the present method, but are in e
lent agreement with the exact results for larger coupling.24 

The centroid density theory gives rates in good agreem
with the exact results at T5100 K, while Grote–Hynes
theory is in poor agreement for small coupling and reas
able agreement above h/(mvb);1.5. Thus, the presen
method is capable of obtaining rate constants of accu
comparable to either of these approaches. 

VI. CONCLUDING REMARKS 

We have shown how the quantum transition state the
recently proposed by Hansen and Andersen8,9 can be eff-
ciently implemented by taking advantage of the low rank
the half-Boltzmannized fux operator. This approach can
easily applied to systems with several degrees of freed
We have also described how the method of Hansen 
Andersen can be used to obtain accurate tunneling co
tions within the context of the more traditional ~i.e., sepa-
rable! quantized transition state theory approach. An imp
tant addendum is that the present approach can be us
improve the separability approximation in such TSTs by 
plicitly treating multiple ~fully coupled! degrees of freedom
in the calculation of the tunneling correction. 

We have demonstrated the present implementation
quantum transition state theory of Hansen and Anderse
using it to calculate thermal rate constants for the D1H2 

reaction. This reaction is known to be direct and the quan
transition state theory gives rate constants in excellent ag
ment with exact results. 

We have also used the present method to calculate
neling corrections for a one-dimensional double well pot
tial bilinearly coupled to a harmonic bath. This transiti
state theory approach severely overestimates the tran
sion coeffcient, Eq. ~5.8!, when there is signifcant recros
ing of the transition state ~as would be expected!. Howeve
when the transition state theory ansatz of direct dynamic
met the present results are in good agreement ~at T 
5100, 200, and 300 K! with the exact results obtained b
Topaler and Makri.24 The use of a physically realistic pote
tial for obtaining the tunneling correction allows for an a
curate rate to be obtained even at temperatures below
crossover temperature ~where, for example, the parabol
barrier tunneling correction is not valid!. 
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Finally, we offer some suggestions for possible impro
ments to the theory. While the Pade´ approximant form for
the correlation function, Eq. ~2.2!, proposed by Hansen an
Andersen possesses many desirable characteristics it is
sible to obtain a positive value for the parameter b given by 
Eq. ~2.3b!, resulting in a meaningless value for the rate. ~We 
observe this for the double well problem in Sec. V forT 
.50 K.! Thus, a form for the correlation function whic
always yields a useful rate ~while still possessing the othe
desired properties! is wanting. 

Another possibility for improvement involves movin
beyond the separability approximation of Sec. IV. It sho
be possible to include some effects of the coupling in 
calculation of Cf f  (0) and Cf f  (0) by a perturbative or other¨ 

wise approximate approach. 
As shown in Sec. II and the Appendix it is possible

calculate many derivatives of the fux–fux autocorrelat
function ~evaluated at t50), via Eq. ~2.9!, and it should be
possible to use this additional information to obtain m
accurate representations of the correlation function, inc
ing the description of recrossing dynamics. A natural ext
sion is to approximate the correlation function using a fu
tional form with more parameters, and thus requiring 
values of higher derivatives at t50. Naturally, such an ap
proach involves moving beyond the traditional assumption
a ‘‘transition state theory,’’ namely, that of direct dynamic
More systematic approaches have previously been applie
different contexts.40,41 
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APPENDIX: TIME DERIVATIVES OF THE FLUX–FLUX 
AUTOCORRELATION FUNCTION 

In this Appendix we derive a general expression for 
Kth derivative of the fux–fux autocorrelation functio
evaluated at zero time. In particular, we exploit the low ra
of the Boltzmannized fux operator, 

2bĤ /2F 2bĤ /2F̂ ~b!5e ˆ e , ~A1! 

which appears in Eq. ~1.2! for the correlation function. Thus
if the nonzero eigenvalues and eigenvectors of F̂ (b) are ob-
tained by a Lanczos scheme 

F̂ ~b!un&5 f nun&, ~A2! 

then the correlation function becomes 

iĤ t/\F 2 iĤ t/\Cf f  ~ t !5  (  f n  ̂nue  ˆ e un&. ~A3! 
n 

It is easy to show that the time derivatives of Cf f  (t) evalu-
ated at zero time are given by expressions containing c

https://Makri.24
https://coupling.24
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mutators between the Hamiltonian and the fux operator.
the frst two nonzero derivatives, one obtains 

Cf f  ~0!5(  f n  ̂nuF̂ un&,  ~A4! 
n 

and 
2i 

~2 !¨ ˆ ,@Ĥ ,FCf f  ~0!5Cf f  ~0!5S D  (  f n  ̂nu@H ˆ  ##un&.  ~A5! 
\ n 

Then the derivative C(  
f f
K)(0) is composed of K nested com-

mutators of the Hamiltonian with the fux operator. Ho
ever, the Kth nested commutator can be expressed as 

KĤKF K ˆ K21F K ˆ K22FPK 
ˆ 1PK21H ˆ Ĥ 1PK22H ˆ Ĥ 21ŁŁŁ 

1P1 
KĤF̂Ĥ K211P0 

KF̂Ĥ K , ~A6! 
Kwhere the coeffcients PK2k are those given in Eq. ~2.10!. It  

is not hard to see that if we apply powers of the Hamilton
to the eigenvectors of the Boltzmannized fux operato

ˆ kgenerate the vectors unk&5H un& that the Kth derivative is 
given by 

KKi 
~K !Cf f  ~0!5S D  (  f n  (  PK

k  ̂ nK2kuF̂ unk&,  ~A7! 
\ n k50 

which is the equivalent of Eq. ~2.9!. 
The method of calculating the derivatives utilizing t

half-Boltzmannized fux operator presented in Sec. II p
sents some advantages over that given here. A shorter p
gation in imaginary time (tc52 ib\/4 rather than
2 ib\/2) is required and fewer multiplications of the Ham
tonian onto the eigenvectors are needed. 

1 H. Eyring, J. Chem. Phys. 3, 107 ~1935!; Trans. Faraday Soc. 34, 41
~1938!. 

2 E. Wigner, Trans. Faraday Soc. 34, 29  ~1938!. 
3 W. H. Miller, J. Chem. Phys. 61, 1823 ~1974!. 
4 For a review of conventional transition state theory approaches and 
tum corrections, see D. G. Truhlar, in The Theory of Chemical Reactio
Dynamics, edited by M. Baer ~Chemical Rubber, Boca Raton, 1985!, Vol. 
IV, Chap. 2. 

5 J. W. Tromp and W. H. Miller, J. Phys. Chem. 90, 3482 ~1986!. 
6 G. A. Voth, D. Chandler, and W. H. Miller, J. Chem. Phys. 91, 7749 
~1989!; G. A. Voth, Chem. Phys. Lett. 170, 289 ~1990!. 

7 D. G. Truhlar and B. C. Garrett, J. Phys. Chem. 96, 6515 ~1992!. 
or 

-

n 
to 

 
-
pa-

an-

8N. F. Hansen and H. C. Andersen, J. Chem. Phys. 101, 6032 ~1994!. 
9N. F. Hansen and H. C. Andersen, J. Phys. Chem. 100, 1137 ~1996!. 

10T. Yamamoto, J. Chem. Phys. 33, 281 ~1960!. 
11W. H. Miller, S. D. Schwartz, and J. W. Tromp, J. Chem. Phys. 79, 4889 

~1983!. 
12W. H. Thompson and W. H. Miller, J. Chem. Phys. 106, 142 ~1997!; 107, 

2164~E! ~1997!; H. Wang, W.H. Thompson, and W. H. Miller, ibid. 107, 
7194 ~1997!; W. H. Miller, J. Phys. Chem. A 102, 793 ~1998!. 

13T. J. Park and J. C. Light, J. Chem. Phys. 85, 5870 ~1986!. 
14T. J. Park and J. C. Light, J. Chem. Phys. 88, 4897 ~1988!. 
15T. Seideman and W. H. Miller, J. Chem. Phys. 95, 1768 ~1991!. 
16H. Wang, W. H. Thompson, and W. H. Miller, J. Phys. Chem. A 102, 

9372 ~1998!. 
17W. H. Thompson and W. H. Miller, J. Chem. Phys. 102, 7409 ~1995!. 
18T. C. Germann and W. H. Miller, J. Phys. Chem. A 101, 6358 ~1997!; D.  

E. Skinner, T. C. Germann, and W. H. Miller, ibid. 102, 3828 ~1998!. 
19U. Manthe, J. Chem. Phys. 102, 9205 ~1995!; U. Manthe and F. Matzkies

Chem. Phys. Lett. 252, 71  ~1996!. 
20F. Matzkies and U. Manthe, J. Chem. Phys. 106, 2646 ~1997!; U. Manthe 

and F. Matzkies, Chem. Phys. Lett. 282, 442 ~1998!; F. Matzkies and U.
Manthe, J. Chem. Phys. 108, 4828 ~1998!. 

21W. H. Miller, J. Phys. Chem. 99, 12387 ~1995!; Faraday Discuss. 102, 53  
~1995!. 

22D. Brown and J. C. Light, J. Chem. Phys. 97, 5465 ~1992!. 
23D. H. Zhang and J. C. Light, J. Chem. Phys. 104, 6184 ~1996!; 106, 551 

~1997!; D. H. Zhang, J. C. Light, and S.-Y. Lee, ibid. 109, 79  ~1998!. 
24M. Topaler and N. Makri, J. Chem. Phys. 101, 7500 ~1994!. 
25This functional form has previously been used in an analytic continua

approach to obtain Cf f  (t); see J. W. Tromp, Ph.D. thesis, Lawrence B
keley Laboratory, University of California, 1988. 

26J. Costley and P. Pechukas, Chem. Phys. Lett. 83, 139 ~1981!. 
27C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255 ~1950!. 
28Y. Saad, Numerical Methods for Large Eigenvalue Problems ~Halstead, 

New York, 1992!. 
29W. H. Thompson, in Highly Excited Molecules: Relaxation, Reaction an

Structure, ACS Symposium Series 678, edited by A. S. Mullin and G
Schatz ~American Chemical Society, Washington, D.C., 1997!. 

30S. L. Mielke, G. C. Lynch, D. G. Truhlar, and D. W. Schenke, J. Ph
Chem. 98, 7994 ~1994!. 

31E. Wigner, Z. Phys. Chem. Abt. B 19, 203 ~1932!. 
32For a review of the history of this problem the reader is referred to R

24 and 34 and the references within. 
33H. Wang, X. Sun, and W. H. Miller, J. Chem. Phys. 108, 9726 ~1998!. 
34A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. Fisher, A. Garg, and

Zwerger, Rev. Mod. Phys. 59, 1  ~1987!. 
35R. Zwanzig, J. Stat. Phys. 9, 215 ~1973!. 
36R. F. Grote and J. T. Hynes, J. Chem. Phys. 73, 2715 ~1980!. 
37E. Pollak, J. Chem. Phys. 85, 865 ~1986!. 
38P. G. Wolynes, Phys. Rev. Lett. 47, 968 ~1981!. 
39D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 ~1992!. 
40O. Platz and R. G. Gordon, Phys. Rev. Lett. 30, 264 ~1973!; Phys. Rev. B

7, 4764 ~1973!. 
41J. C. Wheeler, Phys. Rev. A 9, 825 ~1974!. 

https://2.10!.It

