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Quantum mechanical transition state theory and tunneling corrections
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An efficient implementation of the quantum mechanical transition state theory recently proposed by
Hansen and Andersgd. Chem. Physl01, 6032(1994); J. Phys. Chenl00, 1137(1996)]is
presented. Their method approximates the flux—flux autocorrelation function by using short-time
information to fit an assumed functional fofmith physically correct propertiesThe approach
described here exploits the low rank of the half-Boltzmannized flux operator, thereby facilitating
application to reactions involving many degrees of freedom. In addition, we show how the quantum
transition state theory can be used to obtain tunneling corrections within the framework of more
traditional transition state theory approaches, i.e., those making an assumption of separability.
Directions for possible improvements of the theory are discussed.999 American Institute of
Physics[S0021-9606(99)02009-7]

I. INTRODUCTION quantities)to the exact thermal rate constant for a chemical
reactiont®!!

Classical transition state thedr§fTST) today remains as .
one of the most powerfql techniqges for cqmputing thermal k()= _f Cy(t)dt, (1.1)
rate constants for chemical reactions, particularly for larger Qi(M) Jo
systems. Its usefulness is due to a combination of faCtorS:\}JhereQr(T) is the reactant partition function per unit vol-
is easy to implement. There is a clear physical picture of thgme and
approximation invoked, i.e., the assumption that no trajecto- . L. .
ries recross the transition statk.provides a rigorous upper Ci(t) =t e PH2F e AHIZgHUAE g—iHUA] (1.2)
bound to the exact classical rate. And, finally, it yields accu-

. . is_the flux—flux autocorrelation function. Hek¢ is the
rate rate constants for systems obeying classical mechaniCs

and exhibiting direct dynamics. Hamiltonian, F is the flux operator defined for a dividing

However, often one is interested in chemical reaction§t_Jrface separating reactants and products, @and/k,T

where classical mechanics is not a valid description, e.g\c{)\,’;t:;r;’;i 22gz’ggg:ss%gngtsa;t]'o-rrtht?r;;airrﬁg'rcr):aztoar:eag;ic;ry
light atom transfer reactions which can proceed by tun- : S
9 t) b y Csi(t) to obtain an approximation to the rate constant.

neling. Thus, a quantum mechanical transition state theor ) . )
. . . amely, the values of the correlation function and its second
with properties analogous to those listed above would be of . - , : .
erivative at zero time are used to determine parameters in

immense value. Despite the efforts of many worketsio n assumed functional forpossessing the desired proper-

theory satisfying all of these requirements has been devej—es)_ In this paper we show how this TST can be efficiently

oped. One problem is that no meaningful upper bound to thg, jlemented to make it applicable to large chemical sys-

exact quantum mechanical rate has been found. A larger difsms we also outline how it can be used to obtain a tunnel-

ficulty is that of translating the fundamental assumption Ofng correction for more traditiondl.e., separableTSTs. In
classical transition state theory, “no recrossing trajectories, 3qdition, it can be utilized to improve the separability ap-
into a quantum mechanical framework. Because of this anjroximation in such cases by explicitly including several
biguity many different quantum mechanical transition statetrongly coupled degrees of freedom.

theories have been proposed. While the ultimate goal of a As has been shown previously, the Boltzmannized flux
uniguequantum mechanical analogue of classical transitiopperator,

state theory has not been achieved, there are several quantum . .

mechanical transition state theories which provide accurate F(8)=e #"2Fe P12, (1.3)

methods for calculating thermal rate constants based on @0 of |ow rank(i.e., it has only a small number of nonzero
assumption of “direct dynamicslyielding a significant re-  ejgenvalues}? This is true because the flux operator in a
duction in the computational effort). single dimension has only two nonzero eigenval(iesa
Recently, Hansen and Andersen proposed a quantufihite basis representatiprequal in magnitude and opposite
mechanical transition state thebfybased on the flux—flux in sign(corresponding to forward and backward fIt&) %In
autocorrelation function which is capable of accurately repa multidimensional case the low rank is preserved by the
resenting tunnelindincluding nonseparability). The flux— Boltzmann factor which limits the contribution from the de-
flux autocorrelation function provides a direct rote., grees of freedom parallel to the dividing surface to states of
with no reference to state-selected or energy-dependelawer energy(Naturally the number of these states increases
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with temperature.Yhus, if the dividing surface is placed at

Ward H. Thompson

In Secs. lll and V we implement the transition state

the transition state, the number of nonzero eigenvalues tfieory of Hansen and Andersen using the form for the cor-
F(B) is approximately twice the number of thermally acceselation function given in Eq(2.2). We choose this form

sible states of the activated complex at temperaturehis
fact has previously been exploited by Miller
co-workerd?1-18and Manthe and co-worké?<in the cal-

rather than the parabolic barrier correlation function of Eq.

and (2.1) because it is more robust, i.e., it is not always possible

to obtain the parametets, andE, .° Values fora andb in

culation of exact thermal rate constants for gas-phase chenfid. (2.2) can always be found but may not always be mean-

cal reactions(including recombination procesdg$.

Sig- ingful (see Sec. V), however this is reasonably rare.

nificant progress in this area has also been made by Light The expressions in Eq&.1) and (2.2) for the correla-

and co-workerg3142223

tion function are positive for all times and therefore can be

Section Il describes the implementation of the quantungonsidered to represedirect dynamics in the spirit of tran-
TST of Hansen and Andersen, including how the low rank o$ition state theoryiNote that, Eq(1.1), negative values for
the half-Boltzmannized flux operator can be used to advarthe correlation function diminish the rate constaAt the

tage. An illustrative application to thetbH, reaction is dis-

same time, this naturally limits the accuracy of the resulting

cussed in Sec. Ill. The separable transition state theory afteé as no negative lobe in the correlation functaue to
proach is outlined in Sec. IV and the tunneling correction isrecrossing” of the flux dividing surfadecan be repro-
derived in terms o€(t). Section V describes the applica- duced. This implies the usefulness of these methods will be
tion of the theory to a one-dimensional double well potentialimited to reactions where there is not significant recrossing
bilinearly coupled to a harmonic bath. The calculated rat€f the transition staté@s would be expected). Using only the
constants are presented in Sec. V B and comparison is magfyoth and second derivatives ©f(t) att=0, one has no

to exactresults®® Finally, Sec. VI presents concluding re- choice but to choose a monotonically decaying function.

marks and some directions for future improvements.

Il. TRANSITION STATE THEORY APPROXIMATION

That is, these quantities give information about the initial
value of the correlation function and its initial rate of decay.
More derivatives are necessary to obtain meaningful infor-
mation about recrossin@e., to describe a negative lobe in
the correlation function). Hansen and Andersen applied their

The transition state theory of Hansen and Andersen us@siantum TST to the symmetric and asymmetric Eckart bar-
the values ofC;;(0) andC(0) (where each dot implies a riers as well as a parabolic barrier linearly coupled to a har-
time derivative)to determine the parameters in an assumedonic oscillator and found quite good agreenféntiow-
functional form forCy(t). Specifically, they suggest two €Ver, the method did not always give a rate larger than the
possibilities®® The first is the flux-flux autocorrelation func- €xact value and so does not represent an upper bound.

tion for the parabolic barrigt
b kT
Cht =1~ (fiBwyl2)

wy SiN( B w,/2)cosi wyt) .
[SirP( Bl wy/2) + sint?( wpt) %2

where the two adjustable parameters@ge the barrier fre-

,BE

b, (2.1)

quency, ande,, the barrier height. The second is a form

based on the Padeapproximant to the function

The flux—flux correlation function, E@l1.2), can be ex-
pressedin a form convenient for the present purpase*22

Ci(t) =t F(B2)e*E(pr2)euH, (2.4)
whereﬁ(ﬁ/Z) is the half-Boltzmannized flux operator,
F(BI2)=e PRI BRIA (2.5)

which, like F(B), is of low rank!®2° The critical quantities

d In[C1(z/%)1/dz giving the functional form for the correla- required for the transition state theory a@e;(0) and

tion function a%?®

2

(= (2 a2l (2.2)
with
a=(Bh/2)3C4(0) (2.3a)
and
6 Ct(0) (2.3b)

~(gh)? | 2C(0)

as the adjustable parameters. Note that(ZE8) has the cor-
rect properties as a function of complex firtiee., it is ana-
lytic in the same regions as the trGg(t) and has singu-
larities in the proper placgsBoth correlation function forms
have the correchort time behavio?®

C4(0). Note that all the odd derivatives are zero since
Cs:(1) is an even function of tim¢See the Appendix for a
comparison of using Eq$1.2) and (1.3) vs Eqgs.(2.4) and
(2.5) for the current problem.]

Here we show how the low rank 6(,8/2) can be used
to efficiently obtainCy;(0) andCy(0). Thefirst step is to
obtain the eigenstates of the half-Boltzmannized flux opera-
tor

F(BI2)|m)=1p/m) (2.6)

with nonzero eigenvalues. This can be accomplished using
an iterative Lanczos schefe?® This basis of eigenstates
can then be used to evaluate the trace required to obtain
Cy1(1).152% Then the flux—flux autocorrelation function at
zero time is
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Ci(0)=tr{F(BI2)F(BI2)}, 5

=%;<mWTBQﬁWBQNm%

=>, f2. (2.7)

The second derivative evaluatedtatO can be straightfor-
wardly calculated as

C,(t)x 10"

i\ 2
é”an=(%J w{E(BIR)IALTAF (BT

_ 2 2 -1 . y ' y ‘
=—— 2 fl f(m[A%/m) 0 5 10 15 20 25 30
As m Time (fs)

. (2.8) FIG. 1. Flux—flux autocorrelation function for the+Bi, reaction atT
=300 K for even parity. The quantum transition state theory ré&gaghed
line) using Eq.(2.2) is compared with the exact correlation functisolid

It is clear from these expressions that eigenstates fyyjth line). The units of the correlation function gegomic units of timg 2.

=0 will not contribute as botl;(0) andC;(0) consist

only of quantities proportional td)rzn or ff. It is also

noteworthy that the only work required to obt&in(0) and  Sec. Il in order to illustrate its utility for multidimensional

C4(0) once the eigenstates are known is a single multiplisystems. Specifically, we calculate the thermal rate constant

cation of the Hamiltonian onto each eigenvectsni)) and ~ for the D+H, reaction for zero total angular momentuth (
some vector products. =0). This provides a useful test as the reaction is known to

At this point it is useful to consider the computationalbe direct and the quantum transition state theory is therefore

savings realized in this approximate approach. In a fully rigXPected to give accurate rates.

orous calculation of(t) to obtain the rate, each eigenstate !N this section we compare rate constants for the P+H

of E(8/2) must be propagated in real ime uprt2, where reaction obtained from the quantum transition state theory

7 is the time in whichC,(t) decays to zer®? Con;/ersely approach to the exact rate constants obtained by a full calcu-
ff . ’

Egs.(2.7) and (2.8) require no time propagation, but only a lation of the flux—flux autocorrelation function. In this way,

. Lo S . Fmbiguities arising from the use of different potential energy
single Hamiltonian multiplication on each eigenvector. Exac . o
.surfaces and/or theoretical approaches are eliminated and the

calculations have been carried out for several reactions in- s o o

. 16-20i 4+ s approximation ofCy(t) is directly tested. The specifics of
volving three and four ators, indicating that the tran- the computational approach for calculating the exact rate
sition state theory should be applicable to quite large sys- P bp . 9 . )
tems constant for the BH, reaction has been given in detail

9 . . . _
We note that a general expression for the derivatives % ?ggﬁ;ﬁiozh:t;galﬁgfmgfg tlsfot:]tehesaamerg?(rint]g?io%iage-
the flux—flux autocorrelation function evaluatedt a0 can y P PP

i o scribed in Sec. Il. The approximate correlation function is
be found, giving th&th derivative as taken to be of the form given in E@.2).
o~ K K , ) Figure 1 shows the flux—flux autocorrelation function for
Cii'(0)= E fmfm/kZO Pi{mg—m}{m’'[my), (2.9)  the D+H, reaction(for even parity)at T=300 K obtained

mm - exactly and from the transition state theory approximation of
where|m,)=H¥m) and Sec. Il. The two correlation functions are in good agreement.
Note that the approximate correlation function is not greater

) (2.10) than the exact correlation function at all times, but for this
kI (K=k)! temperature does yield a thermal rate constant larger than the
(Note that no more thal{/2 multiplications of the Hamil- €Xxact result. The exact correlation function does become

tonian onto each eigenvector is required since for &ven slightly negative around 15 fs, while the transition state
theory correlation function decreases monotonically and re-

=2 frl(m'[AIm)|?
m!

P =(~ 1)

(m’[mg) = (Mol Migz), (211 mains positive at all times.
and an analogous, though less symmetrical, division can be An Arrhenius plot for the D+bhireaction for total angu-
made for oddk.) lar momentumJ=0 is shown in Fig. 2 af =300- 1500 K.

The rate constants obtained from an exact evaluation of the
flux—flux correlation function are compared with those from
the quantum transition state theory. For reference, the exact
We now consider an application of the quantum transirate constants agree to within 2.5% with the previous exact
tion state theory of Hansen and Andersen as described @alculations of Mielke et al®® over this temperature

lll. THE D+H, REACTION
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107 : : . ; . wheres=s; defines the flux dividing surface then
k(T)= ! fwc t)dt
10" (M= QM) Jo t(t)dt,
2 = tr,[e AHb(%0) Jm s.(t)dt,
§10 15| | Qr(T) b[ ] 0 ff( )
L]
< :
£ QX(T) (=
e | ] =— t)dt. 4.3
5 QM Jo SV (@3)
¥ We have used the fact that(s,) commutes wittH andF,
10 and
Q¥ (T)=tr[e™FHul*0], (4.4)
_18 N L L L !
7 s L0 15 2.0 25 3.0 35 The flux—flux autocorrelation functio@§(t) is that for the
1000/T (1/K) reaction coordinate alone, i.e., EG.2) [or Eq. (2.4)] with

FIG. 2. Arrhenius plot for the BH, reaction for zero total angular momen- the full Hamiltonian replaced sz- Equat|0n(4-3) can be
tum (J=0). The rate constants obtained from an exact evaluation of thritten in the form of Eq(4.1) with the tunneling correction
flux—flux autocorrelation functiorisolid line) and the quantum transition given by

state theory resulfilled circles)are shown.

h o0
I(T)= kb—TeﬁEbfo C3(t)dt. (4.5)

range. The agreement between the approximate and exact
rates is excellent; the rates are within 5% at all temperaturékis worth noting that for the free particleith E,=0), for
shown. It is interesting to note that the transition state theomyhich the correlation function is
rate constants are smaller than the exact result§=&00 k,T (4812)2

K. It would be interesting to examine the variational nature ~ CIP(t)= ST (4.6)
of the quantum transition state theory by “optimizing” the [t°+(2BI2)7]
flux dividing surface to minimize the rate constint. one obtainsI'(T)=1. For the case of a parabolic barrier,
with Cy(t) given by Eq.2.1),
IV. SEPARABLE TRANSITION STATE THEORY
ﬁﬁwb/Z
rm= 4.7)

It is instructive to examine the relation of the quantum

sin(fi Bwy/2)’
mechanical transition state theory described in Sec. Il to the . = _ . )
“conventional” formulation. The conventional quantum which is the exact result previously obtained by MifléFhe

transition state theory is given as the quantized version of ﬂ%{:mdard W|_gner tunneling correctidris the expansion of
classical TST rate this expression to lowest order#in) Naturally, the quantum

TST of Hansen and Andersen obtains the correct result for
ko T Q¥(T) the case of the parabolic barrier using Exl).
h Q(T)

The separable quantum transition state theory given by
whereQ,(T) andQ¥(T) are the(quantum mechanicapar- Eqg. (4.3) may be calculated with the exaCf;(t) or with
tition functions for the reactants and the activated comple

)ﬁ?f(t) replaced by its approximate form within the TST of
respectively,E, is the barrier height, ant(T) is a factor ansen and Andersen. It |s.|mp0rtant to note th‘?‘t(E@ .
) . : cannot always be applied using the exact correlation function
accounting for the effects of tunneling, the tunneling correc-’. . . . !
. ) . ; since the rate in the reaction coordinate alone is not always
tion. Note that this formulation of quantum TST involves an ) .
. . . . __well-defined. For example, the flux—flux autocorrelation
assumption of separability between the reaction coordina : ! . .
. : s -function for the one-dimensional double well potential con-
(i.e., the normal mode coordinate at the transition state with. . . . . )
. . - sidered in Sec. V oscillates indefinitely and thus there is not
an imaginary frequencyand the remaining degrees of free- " "\ o o e T o cion coordinate aloHew:
dom at the transition stat®*(T) is calculated in the degrees

of freedom orthogonal to the reaction coordinate at the trag o M such cases the quantum TST of Hansen and Ander-

. . : . : . “sencanstill provide a useful evaluation of the rate, as will be
sition state. Typicallyl'(T) is a one-dimensional tunneling seen shortly.When the double well is coupled to a harmonic

correction factor, though it sometimes includes some effe%ath which is the system one wishes to describe, there can

of the curvatu_re of the reaction pdth. . be a well defined rate as the bath can withdraw energy from
Now consider the thermal rate constant as obtained from . . .
. i the reaction coordinate. The system can thereby relax into

the flux—flux autocorrelation function. If we assume separ

bility between the reaction coordinate, which we denots, byathe product well, eliminating repeated recrossing of the tran-

and the bath at the transition state such that the Hamiltonia%rhtlon state. . . .
The assumption of separability at the transition state

can be written as made in Eq.(4.2) could equally well be carried out while
H=H+H,(s=sp), (4.2) including several coordinates if;. The separability ap-

e PBo, (4.1)

kow(T)=T'(T)
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proximation can thereby be improved since all the coordimodes are then the remaining normal mode coordinates. We
nates inH, are treated fully coupled in the quantum transi-approximate the reaction coordinate potential as a symmetric

tion state theory of Hansen and Andersen. double well such that
~ 4
~ p 1 ~ Wy A
5_75 — §w§32+ 16EbS4, (5.5)

V. DOUBLE WELL COUPLED TO A HARMONIC BATH ) ) )
where w; is the absolute value of the imaginary normal

mode frequency of thémass-weightedjeaction coordinate
To illustrate the quantum mechanical transition staté. The bath Hamiltonian is given by
theory we apply it to the problem of a symmetric double well N
potential bilinearly coupled to a harmonic bath. This problem 5 — E
2 i b=,
has been studied in great detail by a large number of i=1

2,33 H . .
workers** and, importantly for the present purpose, exacypere theQ); are the bath mode frequencies corresponding to
calculations for the rate constant have been carried out blMe (mass-weightedgoordinate<Q; , obtained from the nor-

. - . - J,
Topaler and Makff using the quasiadiabatic propagator . mode analysis at the transition state. In defining the re-

path integral approach with an influence functional. The (o coordinate to be the imaginary frequency normal
Hamiltonian can be written as mode coordinate we are, in effect, making a choice of the

A. Description of the problem

AZ 1
J 2A2

Pz 1 w2’ flux dividing surface designed to improve the accuracy of the
=X = podx?+ b4 transition state theory. We have not carried out an explicit
2p 2 16E, optimization of the dividing surface, as suggested by Hansen
N [ 2 and Andersefi® which may improve the accuracy of the rate
+> L/ +om, w?ff} constants.
=1l2mp 2 a The classical Hamiltonian corresponding to Eg.1),
N N 2 with a system coordinate bilinearly coupled to a harmonic
_2 cj&j%+2 € 2)“(2’ (5.1) bath, is equivale_nt to the system coordinate obeying a gen-
=1 =1 2mj; eralized Langevinequatiort® Grote and Hynes have ob-

tained a simple and elegant expression for the rate constant
for this problem, using a parabolic approximation to the
%arrier3® Pollak has shown that their approach is equivalent
to classical transition state theory applied in the normal mode
Qoordinates of the transition stdfeQuantum mechanical ef-
hf%cts can be included in the Grote—Hynes theory rate con-
stants by aorrection factor derived by Wolyné%.

wherewy, is the barrier frequency and theg are the frequen-

cies of the bath. The last term is a renormalization fact
which ensures that the barrier heighf,, remains the same
as the system—bath interaction, defined by the coupling co
stants{c;}, changes. We consider the parameter values in t
“DW1" potential of Topaler and Makf with w,=500

—1 — ~1 —
cm *, E,=2085 cm® , and.=1837.15a.u. (the mass of a Finally, we note some computational details. In calculat-

hydrogen atom). . N )
The characteristics of the bath are encompassed in tH&d C11(0) andCy(0) by Equ(2.7) and(2.8), respectively,
a sinc-function discrete variable representation Bhasss

| [ ia the relatioff* . . ,
spectral density)(w), via the relatio used for the one-dimensional double well potential. The flux
2

T Cj operator is used in the commutator form,
Hw)=7> Sw— ;). (5.2)
2T mjo; A A
_ . F=[Hs.h(s)]. (5.7)
Here we assume an Ohmic spectral density with an exponen-
tial cutoff, Four Lanczos iterations are performed to obtain the nonzero
J(w)=nwe™ ¥, (5.3) eigenvalues of (B/2) in Eq.(2.5) and their corresponding

eigenvalues. The ratio of partition functio®(T)/Q,(T),
where 7 is a measure of the system—bath interaction and i§ £q, (4.3) is obtained using a normal mode analysis for
related to the friction of the harmonic bath amngdis the  poih the reactants and the activated complex.
cutoff frequency(taken to be 500 cit). We represent the
bath as a set ¢B800) oscillators with equally spaced discrete
frequencies with a maximum frequency aba Then, the g Results and discussion
coupling constant for a given oscillator is given by the rela-

tion Here we present the results for the double well bilinearly
coupled to a harmonic bath using the method described in
2
ci 2 ~ologp 54 Secs. Il and IV.
mw; e/ @, (5.4) Following Topaler and Mak#? we report the rates for

. ) the double well potential bilinearly coupled to a harmonic

whereAw is the frequency spacing. _ bath as the transmission coefficient
The reaction coordinate is obtained by solving for the

normal mode coordinates of the potential in &Egl) and is k(T)

given by the mode with an imaginary frequency. The bath ()= krst(T)* 5.8)
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25 T . . . 5

/e, o,

FIG. 3. Transmission coefficient for the double well potential bilinearly FIG. 4. Same as Fig. 3 but fér=200 K.
coupled to a harmonic bath Bt 300 K vs the coupling strength parameter
nl(nwp). Results are shown for the present method as given 4B,

lid line [ i [ i [ ; =~ ; T
c(asx(;ct resl)J'Ithhﬁprag";‘)g‘l’;'rc:ﬁrﬁ;z;”e”f_e"219),(Cs"glrizcgﬁi‘?:ge_d line), and the gy coefficient obtained from E¢#.3)is slightly larger than
that obtained from the parabolic barrier tunneling correction,
by less that 5%.
The transmission coefficient is plotted vs the coupling
The primitive transition state theory rate,s(T), is given strength parameten/(uw,) at a lower temperaturel
by =200 K, in Fig. 4. Again the transition state theory is sig-
wo nificantly in error for small coupling but reproduces the
krs(T) = EefﬁEb, (5.9)  transmission coefficient for larger couplingy/(uwy)
greater tharn~0.5] quite well. The present method and the
where wg is the frequency in the reactant wetbhd=707  parabolic tunneling correction are in very good agreement
cm~* for the parameters used here). over the entire range of coupling strength.

Transmission coefficients are presented for the approach Finally, Fig. 5 plots the logarithm of the transmission
described in Sec. IV, specifically the rate given by B®).  coefficient as a function of/ (uw,) at T=100 K. Note that
The correlation function for the reaction coordinate aloneat this temperature the exact transmission coefficient exhibits
Cfi(t) is obtained using the Padspproximant form of a turnover(such as those observed in Figs. 3 andt4xpo-
Hansen and AndersénEq. (2.2), for the correlation func- nentially small couplingf and so it does not appear in this
tion. The values ofc;;(0) andC;(0) are obtained from data. At this low temperature the parabolic tunneling correc-
Egs.(2.7) and(2.8), respectively and used to determine theion does not give a useful rate for small couplingereT
parameters andb via Egs. (2.3). For comparison we have is below the crossover temperature, i.e., defined as that for
carried out calculations using the parabolic tunneling correawhich Eq.(4.7) diverges, given by .=fw/(2ky)]. How-
tion from Eq.(4.1) using Eq.(4.7) for I'(T).

Figure 3 shows the transmission coefficient at300 K
vs the parameter/(rwp) governing the coupling strength
[see Egs(5.3) and(5.4)]. The exact calculations of Topaler
and Makr?* and the results obtained using the traditional 30
parabolic barrier tunneling correction are plotted for com-
parison. It is immediately obvious that the transition state
theory (with either tunneling correctigrdoes not reproduce 25t
the correct behavior of the transmission coefficient for small
coupling. This regime is dominated by recrossing effects as
the small coupling inhibits the relaxation of the system in the 20 ¢
product well resulting in repeated recrossing of the transition
state. Since the transition state theory makes no accountin
for recrossing dynamics, it severely overestimates the rate
for small coupling. However, for intermediate to large cou-
pling [ »/(nwy,) greater tham-1], the transition state theory 1.0
correctly(and quantitativelypredicts the decrease of the rate 0 1 2 3
with increased coupling. This is because the dynamics for ko,

TthiS range of coupling strength is d_ir_eCt’ i.e., itis CharaCte_rFlG. 5. Same as Fig. 3 but far=100 K and here the logarithm of the
ized by little recrossing of the transition state. The transmisransmission coefficient is plotted.

log x

1.5 +
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ever, because the present approach for obtaining the tunnel- Finally, we offer some suggestions for possible improve-
ing correction is based on a physically realistic onements to the theory. While the Paapproximant form for
dimensional potential idoesgive meaningful rates in this the correlation function, Eq2.2), proposed by Hansen and
regime. The present transition state theory approach givésdersen possesses many desirable characteristics it is pos-
transmission coefficients in reasonable agreement with trable to obtain a positive value for the paramétgiven by
exact calculation over the entire range of coupling. The reEq. (2.3b), resulting in a meaningless value for the @&
sults from the parabolic barrier tunneling correction areobserve this for the double well problem in Sec. V Tor
shown for larger values of the coupling and are in good=50 K.) Thus, a form for the correlation function which
agreement with the present method. alwaysyields a useful ratéwhile still possessing the other

It is instructive to consider how the present method comeesired propertiess wanting.
pares to other quantum transition state theory approaches. Another possibility for improvement involves moving
Topaler and Makfff compared their exact results with thosebeyond the separability approximation of Sec. IV. It should
from Grote—Hynes theof§with a quantum correctidfiand  be possible to include some effects of the coupling in the
centroid density theory At T=300 and 200 K, these ap- calculation ofC;(0) andC;;(0) by a perturbative or other-
proaches significantly overestimate the rate constants fgjise approximate approach.
small coupling, as does the present method, but are in excel- As shown in Sec. Il and the Appendix it is possible to
lent agreement with the exact results kanger couplind”’  calculate many derivatives of the flux—flux autocorrelation
The centroid density theory gives rates in good agreemeRjnction (evaluated at=0), via Eq.(2.9), and it should be
with the exact results at=100 K, while Grote—Hynes possible to use this additional information to obtain more
theory is in poor agreement for small coupling and reasorgccurate representations of the correlation function, includ-
able agreement above/(uw,)~1.5. Thus, the present ing the description of recrossing dynamics. A natural exten-
method is capable of obtaining rate constants of accuragjon is to approximate the correlation function using a func-
comparable to either of these approaches. tional form with more parameters, and thus requiring the

values of higher derivatives &&0. Naturally, such an ap-
proach involves moving beyond the traditional assumption of

VI. CONCLUDING REMARKS a “transition state theory,” namely, that of direct dynamics.

We have shown how the quantum transition state theorylOre Systematic approaches have previously been applied in
recently proposed by Hansen and Andetaran be effi-  different context§>
ciently implemented by taking advantage of the low rank of
the _half-Bo_Itzmannlzed flux operator. This approach can bS\CKNOWLEDGMENTS
easily applied to systems with several degrees of freedom.
We have also described how the method of Hansen and |t is a pleasure to thank Professor William H. Miller for
Andersen can be used to obtain accurate tunneling correlsis encouragement as well as for many fruitful discussions
tions within the context of the more traditioni@k., sepa- and useful suggestions. | also wish to acknowledge Dr.
rable) quantized transition state theory approach. An imporHaobin Wang for several productive conversations and help-
tant addendum is that the present approach can be usedfiPcomments. | am grateful to Professor James T. Hynes for
improve the separability approximation in such TSTs by exhis generous support.
plicitly treating multiple(fully coupled)degrees of freedom
in the calculation of the tunneling correction.

We have demonstrated the present implementation th&PPENDIX: TIME DERIVATIVES OF THE FLUX-FLUX
quantum transition state theory of Hansen and Andersen YUTOCORRELATION FUNCTION
using it to calculate thermal rate constants for theHD
reaction. This reaction is known to be direct and the quantu%h

transition state theory gives rate constants in excellent agre&y juated at zero time. In particular, we exploit the low rank

ment with exact results. of the Boltzmannized flux operator,
We have also used the present method to calculate tun-

neling corrections for a one-dimensional double well poten-  £(8)=e #HI2Eg= A2 (A1)

tial bilinearl led t harmoni th. This transition . . . :
al bilinearly coupled to a harmonic ba.l S transitio which appears in Eq1.2)for the correlation function. Thus,
state theory approach severely overestimates the transmjs-

sion coefficient, Eq(5.8), when there is significant recross- If the nonzero eigenvalues and eigenvectors (@) are ob-

ing of the transition statéas would be expected). However, t&inéd by a Lanczos scheme

when the transition state theory gnsatz of direct dynamics is 'E(ﬁ)|n>= faln), (A2)

met the present results are in good agreem@antT

=100, 200, and 300 Kwith the exact results obtained by then the correlation function becomes

Topaler and Makrt? The use of a physically realistic poten- . .

tial for obtaining the tunneling correction allows for an ac- C(t)=2, fo(n|eHViFe Ry, (A3)
curate rate to be obtained even at temperatures below the ;

crossover temperaturevhere, for example, the parabolic It is easy to show that the time derivativesGgf(t) evalu
barrier tunneling correction is not valid). ated at zero time are given by expressions containing com-

In this Appendix we derive a general expression for the
derivative of the flux—flux autocorrelation function
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