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An efficient method was recently introduced by Thompson and Mile€hem. Physl06, 142

(1997)] for calculating thermal rate constants using the flux—flux autocorrelation function with
absorbing boundary conditions. The method uses an iterative method to exploit the low rank feature
of the Boltzmannized flux operator and subsequently only propagates the eigenvectors that have
significant contributions to the rate constant. In the present article, this method is used to calculate
the thermal rate constants of the+E&,—HCI+H reaction in the temperature range of 200—
1500 °K. Total angular momentum is treated by employing the body-fixed axis frame, both exactly
and also via various approximations. Comparisons with previous exact and approximate theoretical
results are made. @997 American Institute of Physi¢§0021-9606(97)00742-3]

I. INTRODUCTION =300 °K). This methodology is complementary to that of
L . ) Seideman, Manthe, and Milfefor the analogous “direct”
In a recent papeThompson and Miller described a par- 44 “correct” calculation of themicrocanonicalrate, i.e.,

ticularly efficient procedure for calculating thermal rate conyne cumulative reaction probability(E). One can of course
stants for chemical reactions that is both “direct,” i.e., jpiain k(T) from N(E)

avoids having to solve the state-to-state quantum reactive
scattering problem, yet also “correct,” i.e., without inherent K(T)= ,1f°° _E/kaT

L2 . T)=[27hQ,(T dEe =""8'N(E), 1.3
approximation. The method is based on the formally exact (M=[2mAQ(T)] —w (E) (2.3)

expression for the rate constant as the time integral of the . . .
flux—flux autocorrelation functicr? ut use of this expression requires one to Hé{fe) over a

significant range oE even ifk(T) is desired for only one

(7 value of T. The present canonical version of the methodol-
k(T)=Q.(T) fo dtCy(1), (1.12)  ogy is thus clearly desirable if one wishes to hie{E) for
only one(or a few)values ofT.
where The purpose of this paper is to apply this flux correlation

S on STPRTH TP, approach to the reaction €H,—HCI+H, which is of im-
Cyi(t)=tr[e PH2Re Az Ee UMY, (1.1b) pgftance in the chemistry ofzthe atmospHereBecause it
B=(kgT) %, andQ,(T) is the reactant partition function per has been well studied experimentdlignd also recently been
unit volume. (We also note work by Lighet al* and by the subject of extensive state-to-state reactive scattering cal-
Manthé that has features in common with this approach.culations by Mielkeet al®® using a newly developed
The efficiency of the approach relies on two essential fegotential-energy surfac) it also serves as an excellent

tures:(1) The low rank of the Boltzmannized flux operator benchmark system to test this new methodology and demon-
strate its efficiency. Unlike the earlier work of Thompson

F(B)=e PH2Rg AHI2 (1.2)  and Miller?! here we treat nonzero total angular momentum

which facilitates the evaluation of the trace in Bglb), and (i.e., J>0) exactly and- are thus able to assess the accuracy
of some of the approximate ways of treatihgO.

(2) the fact that the correlation function decays rapidly to Section Il first summarizes the flux—flux autocorrelation

zﬁgit ?i%ér_]at quantum time evolution is required only fOrfunction_ methodplogy, and Sec. lll gives specifigs of the
More specifically, “low rank” means thaf:(,B) has calcqlatlons(pass sets, angular momentum cqupllng,)'etc.

) ’ ; . Section IV discusses the results, the comparisons with ex-

only a relatively small number of eigenvalues that are SIg|5eriment and the scattering calculations, and the validity of

nificantly different from zero, and the first step of the procey . ious angular momentum decoupling approximations for

tors. It is only these eigenvectors which must be time- .~ .

: . “application.
evolved quantum mechanically, and only for the relatively
short time of~#A g (if the dynamics does not involve the
formation of a collision complex(e.g., #B3=27fs for T Il. SUMMARY OF THEORY

With an absorbing potentia included in the real time

aCurrent address: Department of Chemistry and Biochemistry, University dPropagation, the flux—flux autocorrelation function in Eg.
Colorado, Boulder, CO 80309. (1.1b) becomes
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Cff(t):tr[ef,BI:I/ZIEefﬁl:UZei(I:i+i%)t/h|2efi(|:|7ié)t/ﬁ], where{|un(t))} are thetime-evolveckigenvectors ofA:(,B)

(2.1a) —i(A=ioh
where lum(t))=e TUm)- (2.6b)

This time evolution thus constitutes the second step of the
F=-— [H h(s)] (2.1b)  present procedure, and it is accomplished by the usual meth-
ods of time-dependent wave packet propagation. We have
is the flux operator, with(s) being the usual step-function used the split-operator algorithm, but others are also pos-
1 s>0 sible. C4(t) is thus generated step-by-step in time as the
’ (2.1c)  time evolution in Eq(2.6b)is carried out.
0, s<0. Since we are only interested in the time integral of the

In this section the various operators are indicated in the usulix—flux autocorrelation function, alternate expressions can
abstract notatiore.g.,H,F) and vectors in bracket notation, P& obtained by integrating E(2.1a)by parts
though in practice they are finite matrices and vectors in thjt

h(s)=

basis described in Sec. Ill. The evaluation of &gla)is
divided into two steps. First, a Hermitian Lanczos procedure 0
is used to determine tiismall number ofponzero eigenval-

~ A s 2
dtrcff(t/):tr[F(ﬁ)el(H-He)t/ﬁhe—l(H—le)t/h]+g

t - P
ues and corresponding eigenvectors of the Boltzmannized xf dt'tr[F(g)e/Hriat/ie emitH-iotin]
flux operator(8), Eq.(1.2). Starting with a random initial 0
vector |vg), a Lanczos iteration sequence, including reor- (2.7a)
thogonalization

or
n—1
=F 1) F _1) 2.2 " A o
lony=F(B)|vn-1) k§=:O o (vl F(B)|vn-1) (2.2) Jtdt’Cff(t’)=tr[F(ﬁ)ei(H+iE)I/ﬁhe‘”H‘if)”h]—%

forn=1,2,..., is used to generate an orthopormal basis span-

ning the Krylov subspacuo), F(8)|ve), F(B)?vo),..

F(8)"|vo)}. [The action of the Boltzmann operamarﬁ'*’2

onto a vector, as required in EG.2), is carried out via the (2.7b)

split operator algorithnj.Diagonalization of the Hermitian

matrix wheret is large enough for the integral to converge. Though

A formally equivalent to Eq(1.1), the above expressions actu-

Fi (B)=(vlF(B)|vir), (23) ally pro{/id(l a numericalqz(;\dvantage if a disc[pete variable rep-

then yields the eigenvectofgiy,)} with the largestin abso-  resentatio{DVR) basis is used, because botland €,(<)

lute value)eigenvalues{f}, so thatF(B) can be repre- are diagonal matrices that can be multiplied at negligible cost

t R I S
X fodtrtr[F(ﬂ)el(H+le)t /ﬁere—l(H—le)t /ﬁ],

sented in its eigenstate expansion as follows: compared to the full matrix df. If the absorbing potential
. were set to zero, then the second term in(EQ) would be
F(B)=2 fmlUm{Upl. (2.4) zero and the overall expression would reduce to the flux—
m

position autocorrelation function used previous;in this

The number of Lanczos iterations required for the convercase, howevet, cannot be too large or else flux will reach
gence of this procedure is essentially the number of nonzefbe edge of the DVR grid and undergo unphysical reflec-
eigenvalues ofF(B) and thus small. In practice one cantions. The presence of the absorbing potential prevents such
reject the initial trial vector and use the first one generateteflections, and in this case the first term vanishes in the
from Eq.(2.2) as the starting vector in Lanczos proceduret— limit, i.e., all of the contribution comes from the sec-
This will guarantee the Lanczos sequence generates ba8Rd term in Eq(2.7), the flux “picked up” by the absorbing
vectors with eigenvalues in descending orfr absolute  region, similar in the spirit of the flux cross-correlation func-

values). One terminates the Lanczos iteration by sopre:  tion used by Germanretal. for the OrOH—O,+H
ori criterion reaction.” This is numerically more stable in the case of

extensive recrossings of the dividing surface, where the first
|fol < tol -[f; 25 term in Eq.(2.7) becomes highly oscillatory. The disadvan-

wheref, andf, are eigenvalues associated with the first andage of this approach is that it usually takes some time for the
the nth Krylov vector, and tol is a convergence parametetvave packet to reach the absorbing region and the resulting

normally chosen between 0.1% and 1%. propagation time to obtain converged results is longer than

With F(8) given by Eq.(2.4), the trace in Eq2.1a) the original flux—flux autocorrelation function method. For a
becomes direct reaction, it is preferable to keépth terms in Eq.
(2.7); i.e., the result converges for shorter valuastiofn the

Clt E fm(um(t)|F|u (1)), (2.6a) second term alone. Figure 1 illustrates the contribution of

each term of Eq(2.7), and their sum, versus time for the
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Here w is the reduced mass of Cl and, indm that of the

FIG. 1. Contribution of different terms in E.7) vs propagation time for . .
the CI+H, reaction atT=300 °K andJ=0. The dot-dashed line is the two H atoms(6,¢) are the polar and azimuthal angles which

contribution of the first term in Ed2.7) and goes to zero ds-=), the ~ Ofi€Nt R (which is the body-fixed quantization axiwith
dashed line is that of the second tefand becomes the correct result as respect to a space-fixed axis system, sl the azimuthal
t—0), an_d the solid line is their sufwhich approaches the correct result ang|e ofr with respect tR. J2 is the total angu|ar momen-
more rapidly ag— o). o L
tum operatorJ, is the projection operator of total angular
momentum along the body-fixed axR), andA andB are
Coriolis coupling operators.
Cl+H,—HCI+H reaction aff =300 °K andJ=0. One can The basis for the three Euler anglés6,y) is the set of
see that the sum of two terms in EB.7) converges much symmetrized Wigner functions
more rapidly than the second term alone.

1
<¢9¢|JMK;0>EW [Duk(¢,0,9)
KO

I1l. DETAILS OF CALCULATION
X(=1)TDR (0,01, (3.2)
A. Coordinate system and Hamiltonian
For the Ck-H,—HCI+H reaction, we have chosen to V\{hereo=0J orlis the'panty index for. the total' sp%ce nver-
. : ; sion andDy,«(¢,0,¢) is the usual Wignefunction:> J is
use the Jacobi coordinates of thet@l, arrangement since :
the total angular momentum quantum numbétthe projec-

this makes it easier to incorporate the symmetry due to tr}e ' ,
. . : . ion of total angular momentum onto the space-fixed axis,
two identical H atoms. Denoting liy the H—H bond dis- . S ! .
. andK its projection onto the body-fixed aXi®). The matrix
tance,R the distance from CI to the center-of-mass of H—H, £ with t to this basis is di 15nM d
andy the angle betweenandR, the total Hamiltonian in the 0 d _W'f rte_spdec Od 'f Masi ItS '?QOQaRnf 1,4an 7
body-fixed frame can be written’as (and in fact independent &), but not inK (Ref. 14)

Y L L, 1 (IMK';o|H|IMK; o)
TR T LR 2m)! T ouR? 2
A~ ~ ~ ~ ~ _yJd,o _ = = = 9
X (3= 232+ A+B)+V(R.1,y), (3.1a) :HKHK‘5K“K{TR+Tf+T7+V(R’r'”+2MR2
where
h2 2 X[J(I+1)—2K?]
Te= -5 e (3.1b) . )
2 2 — 5——2(Skr k4 1V 1+ Sk oA 3 +
A he 9 2uR
Tr:_ﬁm, (3.1¢) )
+ ks k-1V1+ 0k 1A jki-),
R 92 J 1 4 (3.3a)
'2=—h2(—+cot —+.——), 3.1d
J &yz Y dy Sin? 0% 81,/12 ( ) Where
J2= hz[ ” footg 1 1
T 62 960" St 6 T o=l ——+—|j2
T, (2MR2+2mr2>J , (3.3b)
P & J 4
X\ gzt g 208t Gu a7l (3.1e) A= VI@+ 1) —K(K=*1). (3.3¢)
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The parityo determines the range & andK’, i.e., when
J+o is evenK, K'=0,...,J and otherwis&K, K'=1,...,J
The operatorg? andj . are defined by

Ta_ g2 a + cot g K? as

o= =k 3.4b

J==— 9y coty]|, (3.4b)
and satisfy

j2PK(cos y)=1%j(j+1)PX(cosy), (3.5a)

T pK 3 A * pKx1

j=Pj(cosy)=fAjPi~"(cosy), (3.5b)

wherAeP}‘(CQSy) is the associated Legendre function. There-
fore j? andj. are not the usual angular momentum opera-
tors; they operate only on the associated Legendre function.

B. Basis set

In the present calculation a discrete variable representa- Q,(T)=goQ%(T)+g,QXT),

tion (DVR)™®!" has been used for the,R,y) degrees of

freedom. Specifically, we have used the sinc-function DVRY

developed by Colbert and MilfErfor ther and R coordi-

nates. The grid constaily, which determines the number

of points per thermal de Broglie wavelength

AX

21 (2ukgT)| 12
=”(“B) , (3.6)

Ng | 72
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28t [ (-1)itep2

i5ipK)= 2 5 {\w;,PX(cos /)
x[A%j(j+1)]Pf(cosy)\wi},  (3.8a)
. 2N—-1 14+(—1 j+p12
ko= > EEDE 2) .
j=K+1
x{\w; P (cos yi/)
X[%A i IP(cos y) Jwi}, (3.8b)
ji(PK)=] (P K=1). (3.8¢)

In our calculation, we fountl=8—-10 to be adequate.

In general, one needs to perform calculations for both
even and odd parities, i.p=0 and 1, and the total rate
constant is given by

k(T)=Qr(Trlf;dt[gOC?f(t)+glc%f(t>], (3.92)

whereCP(t) is the flux correlation function for parity, and
(3.9b)

hereQP(T) is the reactant partition function for pariy

g, being the nuclear spin degeneracy factor for even and odd
parities(in the present case 1 and 3 for 0 and 1, respec-
tively). However, the transition state for -, reaction is
very tight and has a high barrier for, khternal rotation.
Therefore the tunneling splittings for, kihternal rotation at

the transition state are small, and one expects the time inte-
gral of the flux correlation functions for even and odd pari-

was chosen to be 9-14 for the temperature range 3pdies to be similar. This is indeed what we have found. Similar

1500 °K. AtT=200 °K, we found thallg had to be as large

as 23 to give converged results.

The natural finite basis representat{@®BR) for the an-
gular degree of freedom, seen from E&s3)to (3.4), is the
set of associated Legendre functiqﬁi%((cos,y)}, but their
dependencies on the quantum numiemakes it awkward

to construct a DVR for the degree of freedom in the con-

behavior had also been found for the cumulative reaction
probabilities®® This property is used in the actual calcula-
tion to reduce the computational cost by half.

Finally, the primitive set of grid points is truncated by
discarding grid points for which the potential energy is
greater than some cutoff valig ; and those that lie beyond
the boundary of the absorbing potential.

ventional way(i.e., discretizing the FBR based on associated

Legendre quadrature). We have thus usedtirdependent
grid,18'19

i.e., discretizing the FBR using Gauss—Legendre

C. Approximations for J>0

The rate constant calculation described above needs to

quadrature for all th&-blocks. One can then apply the re- e carried out for each value of total angular momentum

sulting transformation matrixrectangular)to construct the
DVR from the FBR?

We have also used symmetrized associated Legendre

functions to account fafd, exchange symmetry
pY-P _ 1 pX +(—1)PP K -

j (cosv)—‘z{ j(cosy)+(—1)PP; “[cog7m— )]}

=i[1+(—1)i+p]PK(cosw

V2 ) '

(3.7)

wherep=0, 1. The angular kinetic-energy matrices for

yielding k;(T), and then the total rate constant is given by

k(T)=JEO (23+1)ky(T), (3.10)
where the factor 2+ 1 is from the sum over the space-fixed
projection quantum numbeévl. The exact treatment of an-
gular momentum requires including the diagonal and off-
diagonalK-states in the calculation, as described in Secs.
Il A and Il B. In practice, however, the contribution dies
off rapidly with increasingK, so that onlyK-states up to
Kmax=3 are necessary to achieve convergence even for large
J. The calculation ok;(T) for eachJ is therefore about an

symmetrized DVR points, after the procedure describedrder of magnitude more expensive than Jke0 calcula-

above, are given by

tion.
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The usual helicity conserving approximatioHCA)?* The simpleJ-shifting approximation(JSA}* results if
corresponds to neglecting the off diagoral,#K, matrix  one takes the three rotation constants in Bdl2c)to be
elements in Eq3.3), wherebyK becomes a “good quantum constant, i.e., independent aof, R, y), A*, B, and C*.
number.” For each J,K) one thus carries out a These are typically the rotation constants evaluated at some
calculation—which is essentially equivalent in difficulty to reference geometrge.g., the transition state). The rotational
theJ=0 calculation—to obtaik;x(T), and then within this energy of Eq.(3.12c) then enters the Hamiltonian of Eq.

approximation (3.12a)as a constant, so that
J IS T — —EXXkgT
Ky(T)=Ko(T)e™ Frot’*s’, (3.14a)
KEAT) = 3 kol(T). @iy
K=-J with
Again, only K states up tK ., are necessary for conver- Epf=1/2A*+BH[J(J+1)—K?]+C*K?, (3.14b)
gence.

whereky(T) is theJ=0 rate constant. In this case the sums

The usual HCA, however, does not work very well foroverJ andK can be carried out to give

the present Cl+Kreaction. In general a better approxima-

tion of this type is the one suggested by McCurdy and k’Y(T)=ko(T)Qi(T) (3.15a)
Miller?2 which is based on the instantaneous principal axe\?vhere

of the three-atom system. Specifically, the body-fixed quan-
tization axis is chosen to be the instantaneous axis with the _E CEK kT
smallest moment of inertia, and the HCA made with this Qrot(T)_J y & e

choice. The Hamiltonian for this principal axis helicity con- ) -
serving approximatiotPA/HCA) is Finally, we note that the transition state for the-8)

reaction is linear, so th&*=oo, requiring thatk =0.

(3.15h)

HIK=Hy+E}X(r,R, ), (3.12a)
whereH, is theJ=0 Hamiltonian D. Time propagation
~  h? 9 K% &P

Ho=5— —ma— 5~ 22— h°
2u IR 2m or

The split operator algorithm has been used for both
imaginary (Boltzmann operatorand real time propagation.
The details have been given previodsind will not be re-
+V(r,R,y), (3.12b)  peated here. We only emphasize that for o0 and the

helicity conserving approximation case, the angular kinetic-
andE}X(r,R,y) is the rotational energy of a symmetric top €nergy operatorT,, is diagonal in the FBR. To form the

2uR? " 2mr?

= 7o)

52

J
X|—=+coty —
ﬂ'yz Y dy

(determined by geometny, R, ) propagator in the DVR, one only needs to exponenfigte
Ik the FBR and then apply the FBR-DVR transformation. When
Eat(r,R,y)=LZA(r,R,y)+B(r,R,7)] the Coriolis coupling terms are included, the kinetic-energy

X[I(I+1)—K2]+C(r,R, y)K?, (3.12¢) matrix is bIock-tridjagonaI in the FBR. In principle, to form
the propagator using the same strategy, one needs to diago-
whereA, B, andC are given in terms of the principal mo- nalize all the |,K) blocks forK<min(J,2N—-1). As noted,
ments of inertia in the usual waiye., A=%2/2l,, etc.). For however, the contribution dies off rapidly with increasing
the present three-atom system these moments of inertia ai€;?° we found thaK ,,,,=3 gives results that are accurate to
within a few percent error compared with including the full
lo(r,R,y) =12 uR*+ mr?) — L2 (uR?) +(mr?) projections, and thus used this value for our thermal rate

+2uR?mr? cos ]2, (3.13a)  constant calculation.

Ig(r,R,y)=1/2( uR?+ mr?)+ 1/ (uR?)?+ (mr?)?

+2uR?mr? cos )42 (3.13p) E Dividing surface and absorbing potential
ot o= uR2+ mr2. ‘ The dividing surface appearing in theandh operators
Ia(r,R,y)=lg+lc=pR+mr (3.13¢) is defined by
JK ; ; ; ;
ELt(r,R,y) is thus essentially a centrifugal potential that s=r(H;—H,)—r(Cl—H,)+0.77=0, (3.16)

adds to theJ=0 Hamiltonian, Eq(3.12b), and in the lan-

guage of spectroscopy one notes that it includes centrifugll atomic units. The absorbing potential is chosen to be a
distortion (because the rotation constants vary with internafjuartic form

geometry)but neglects Coriolis coupling. This approxima- s—s. |4

tion has also been re-discovered more recently by Bo#&man e=)\< 0 ) ,
(termed by him the “adiabatic rotation approximatigrdhd
used quite successfully for determining energies of boundheres,,,,=*+3.5 bohr andsy;= =+ 1.4 bohr, with “+” de-
and metastable states of the HCO system. noting the product valley and - the reactant valley.

(3.17)
Smax— So
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Ct) x 10" (fs™)

20 1;0 4‘0 50
(a) Time (fs)

C(ty x 10° (fs™)
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C(t) x 10* (fs™)

10
(c) Time(fs)

FIG. 2. Flux—flux autocorrelation function far=0 calculation:(a) T
=300 °K, (b) T=800 °K, (c) T=1500 °K.

Within a variation of+ 1 bohr, the calculations were insen-
sitive (in terms of both efficiency and accuraty the posi-
tion of dividing surface.

IV. RESULTS

Cl+H,—HCI+H reaction 7199
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FIG. 3. Arrhenius plot of the thermal rate constant3=a0.

direct barrier crossing reaction such as tkg(t) falls to

zero in a time of ordekB (=27 fs at 300 °K,=5fs at
1500 °K, etc.). This is the type of behavior for which transi-
tion state theory is typically an excellent approximation. At
the highest temperature in Fig. 2 one does begin to see a
small negative lobe in the correlation function, indicative of
recrossing flux, i.e., in a classical picture, trajectories that
cross the dividing surface more than once and thus cause
errors in transition state theory. It is well kndWthat these
effects in general arise at sufficiently high temperature.

Figure 3 shows thd=0 rate constanky(T) (i.e., the
integral of the correlation functions in Fig.&s a function of
T. It is very Arrhenius-like, showing some curvature in the
high-temperature region, and is in quantitative agreement
with the results of Mielkeet al®® scattering calculations.

Figure 4 shows thd-dependence of;(T) for several
temperatures; as computed via the exact method described in
Sec. Il but which is qualitatively the same for the various
approximate methods. In the simpleshifting approxima-
tion, Eq.(3.15)show In k(T) to be a linear function af(J
+1), and Fig. 4 shows that this behavior is a good descrip-
tion of the exact results as soonJais larger than~3 or 4.

This simple dependence dnis extremely useful, of course,
for it means that one only needs to carry out calculations,
either exactly or approximately, for a few valuesJoénd
then interpolate between them in order to evaluate the total
rate via Eq.(3.10).

The total rate constants are shown in Fig. 5: The solid
line is the result of our full dimensional calculation, i.e.,
treating J>0 exactly as described in Sec. Ill. Even here,
though, we did not carry out the calculations for each value
of J, but only at the points shown in Fig. 4 and interpolated
to carry out the sum oveér We note that the effective rota-
tion constant obtained from these plots

Ber=—k In ky(T), (4.1)

d
sl d[J(J+1)]

Figure 2 shows the flux—flux autocorrelation function forincreases slightly, from~1.9 to 2.3 cm?, asT increases

J=0 for several values of temperatire As expected, for a

from 200 to 1500 °K.
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-31.0 ‘ ‘ ‘ T FIG. 5. Arrhenius plot of the thermal rate constants: The solid is the present
e—o T = 1000 :K accurate quantum result, the dashed line is the result of the Sirapitting
N E‘I:;gg E approximation, the circles are results from Re¢h)9and the triangles are
315 o— o T=1300°K : results of the principal axis helicity conserving approximation.
=820 ] the exact treatment faI>>0. This is extremely encouraging
) since the calculation for eadhandK is essentially the effort
x> .
= of aJ=0 calculation. And as noted above, one only needs to
sy ] carry out calculations for a few valuesb&ndK in order to
perform the summation over them to obtain the total rate
-330 | | constant.
Comparison of theoretical results with experiments has
been done previously by Miellet al®® Our more accurate
335 00 200 700 700 so  duantum calculations does not alter the trend in that compari-
(b) J(J+1) son, i.e., the theoretical results are larger than the experimen-

tal ones at lower temperatures and the agreement gets better
FIG. 4. Inky(T) vs J(J+1) for several temperature) 300-500 °K,(b)  at higher temperatures. At this rigorous level of theory, the
1000-1300 °K. discrepancies at lower temperatures can only be caused by
the inaccuracy of the potential-energy surface, as also
pointed out previousi§® It would be an interesting future

. . . . 9(b) ~
. The qrcles n F|g. 5 are the results Mle_kktaal. ob . work to apply our method to this reaction using a more ac-
tained via conventional quantum scattering calculations

These authors made explicit calculations Joup to 6 and curate potential,
then extrapolated for highdrusing the variational transition
state rotation constaf*=2.3 cnm . One sees that there is
excellent agreement between their results and ours, with the The flux correlation function methodology thus provides
slight difference at the lowest temperature being due to theam efficient way for calculating rate constants “directly” and
extrapolation of] values. “correctly,” as illustrated here for the €H,—HCI+H re-

The dashed line in Fig. 5 shows the results of the simplaction. For simple barrier crossing reactions such as this, the
J-shifting approximation, Eq3.15). The agreement with ac- correlation function decays to zero in a very short time. In
curate results is excellent at low temperature but progreshis case the real time propagation part of the calculation is
sively degenerates at higher temperature, being a factor ofly slightly more expensive than the evaluation of the Bolt-
~2.5 too small at 1500 °K. This is primarily due to the factzmannized flux operator, which is essentially the calculation
that this approximation includes ony=0, andK>0 con-  performed in a quantum version of transition state thetry.
tributes progressively more asincreases. Nevertheless, for the reaction dynamics is more complicated, e.g., involving a
the expense of only the=0 calculation this approximation collision complext! then longer time propagation is re-
allows one to obtain an estimate of the complete rate comuired. Here, of course, transition state theory is not even
stant and is thus extremely usefat least for reactions such approximately correct.)
as this one that are dominated by a single activation barrier ~ The calculations presented here are quite efficient and

The triangles in Fig. 5 show the results of the principakasily implemented. One can utilize the standard methods of
axis helicity conserving approximation, E8.11)with Eqs. time-dependent wave packet propagation for both the imagi-
(3.12)and(3.13), and they are seen to be in excell@6®6 nary (i.e., Boltzmann operatorgnd real time propagation.
or better over the entire temperature raregreement with  Calculation of thel=0 rate constanky(T), requires about

V. CONCLUDING REMARKS
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~1-5min on an IBM RISC/6000 590 computer. Within theentific Computing (NERSC) Center, Lawrence Berkeley
J-shifting approximation—which is of reasonable accuracyNational Laboratory, and also by National Science Founda-
except for the highest temperatures—this is essentially afion Grant No. CHE 94-22559.

that is needed to obtain the total rate conskfi). The

principal axis helicity conserving approximation—which is

quite accurate for all values @t—requires calculations for *w. H. Thompson and W. H. Miller, J. Chem. Phy86, 142(1997).
~8-10 values of and~ 3 to 4 values oK, each of which i(Ta{)\\i\?m:ml\/?i}%ricgﬁ?rﬁ Pgﬁlzsglls(;gg%)ﬂ)-(b)w o Miler S. D

is equwalent tod=0 caIcuIatlo.n; it is thus- 3Q times more Schwartz, and J, W. Tro'mmﬁ;. 70 4889(1983’). T i
expensive than thé=0 calculation. The fully rigorous treat- 4@) T. 3. Park and J. C. Light, J. Chem. P§®, 4897(1988); (b) D.
ment ofJ>0 is ~100 times the expense ofl& 0 calcula- Brown and J. C. Lightibid. 97, 5465(1992).

tion and is thus still not unduly expensive for the presentY- Manthe, J. Chem. Phy$02, 9205(1995).
l . h h th hifti . . | T. Seideman and W. H. Miller, J. Chem. PH§8, 4412(1992);97, 2499
application. Though theJ-shifting approximation only (1992); U. Manthe and W. H. Milleibid. 99, 3411(1993).

makes sense for the case of a simple barrier crossings. s. kumaran, K. P. Lim, and J. V. Michael, J. Chem. Ptys, 9487
reaction—where the reference geometry is that of the transi8-(1994).' _ N _

tion state—the principal axis helicity conserving approxima- M. Alag_la, N. Balupanl, L. Cartechini, P. Casavecchia, E. H. van Kleef, G.
ti hould be reasonable much more ene(ally even if G. Volpi, F. J. Aoiz, L. Banares, D. W. Schwenke, T. C. Allison, S. L.
lon S_ A L . 9 I Mielke, and D. G. Truhlar, Scienc&73, 1519(1996), and references
a collision complex is involvedsince the rotation constants therein.

vary with geometry(centrifugal distortion). @) T. C. Allison, G. C. Lynch, D. G. Truhlar, and M. S. Gordon, J. Phys.

As with anv full ntum-mechanical Iculation. how- Chem.100, 135751996), and references thereib) S. L. Mielke, T. C.
s with any fully quantu echanical calcufation, ho Allison, D. G. Truhlar, and D. W. Schwenkbjd. 100, 135881996).

ever, the computational expense grows exponentially Withy i Thompson and W. H. Miller, J. Chem. Phyg2, 7409(1995).
the increasing size of the systéne., the number of degrees 7. C. Germann and W. H. Miller, J. Phys. Chdi.press).
of freedom). One way to escape this dilemma is to exploifW. H. Miller, J. Chem. Physi9, 2373(1968).
: : ; M. E. Rose,Elementary Theory of Angular Momentuiwiley, New

the fact that most reactioreffectivelyinvolve only a few York 1967)' '

L. orK, .
degrees of freedom. For the remaining degrees of freedomg g choi and J. C. Light, J. Chem. PH§g, 2129(1990). The phase
reduced-dimensionality approaches can be used to extract aonvention we adopt is different from this paper. Therefore as shown in
good approximation to the full-dimensional rate constantisthe text, we use the complex conjugate of Wigner function as “ket.”

There is certainly much to be done to explore such methodleélcs)'(l';%rS”)S' G. G. Engerholm, and W. D. Gwinn, J. Chem. P4gs.

The methodology used in this paper offers a rigorous yet(g) J. v. Lill, G. A. Parker, and J. C. Light, Chem. Phys. L8g, 483
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