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An effcient method was recently introduced by Thompson and Miller @J. Chem. Phys. 106, 142 
~1997!# for calculating thermal rate constants using the fux–fux autocorrelation function with 
absorbing boundary conditions. The method uses an iterative method to exploit the low rank feature 
of the Boltzmannized fux operator and subsequently only propagates the eigenvectors that have 
signifcant contributions to the rate constant. In the present article, this method is used to calculate 
the thermal rate constants of the Cl1H2!HCl1H reaction in the temperature range of 200– 
1500 °K. Total angular momentum is treated by employing the body-fxed axis frame, both exactly 
and also via various approximations. Comparisons with previous exact and approximate theoretical 
results are made. © 1997 American Institute of Physics. @S0021-9606~97!00742-3# 
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I. INTRODUCTION 

In a recent paper1 Thompson and Miller described a pa
ticularly effcient procedure for calculating thermal rate co
stants for chemical reactions that is both ‘‘direct,’’ i.
avoids having to solve the state-to-state quantum rea
scattering problem, yet also ‘‘correct,’’ i.e., without inhere
approximation. The method is based on the formally ex
expression for the rate constant as the time integral of
fux–fux autocorrelation function2,3 

` 

k~T!5Qr ~T!21 E dtCf f  ~ t !,  ~1.1a! 
0 

where 

ˆ2bĤ /2F 2bĤ /2 iHt/\F 2 iĤ t/\#,Cf f  ~ t !5tr @e ˆ e e ˆ e ~1.1b! 

b5(kBT)21, and Qr(T) is the reactant partition function pe
unit volume. ~We also note work by Light et al.4 and by 
Manthe5 that has features in common with this approac! 
The effciency of the approach relies on two essential 
tures: ~1! The low rank of the Boltzmannized fux operato

ˆ 2bĤ /2F 2bĤ /2F~b!5e ˆ e , ~1.2! 

which facilitates the evaluation of the trace in Eq. ~1.1b!, and 
~2! the fact that the correlation function decays rapidly
zero so that quantum time evolution is required only 
short time. 

More specifcally, ‘‘low rank’’ means that F̂ (b) has 
only a relatively small number of eigenvalues that are 
nifcantly different from zero, and the frst step of the pro
dure ~vide infra! is a Lanczos iteration calculation to fn
these nonzero eigenvalues and the corresponding eige
tors. It is only these eigenvectors which must be tim
evolved quantum mechanically, and only for the relativ
short time of ;\b  ~if the dynamics does not involve th
formation of a collision complex! ~e.g., \b.27 fs for T 

a!Current address: Department of Chemistry and Biochemistry, Universi
Colorado, Boulder, CO 80309. 
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5300 °K!. This methodology is complementary to that 
Seideman, Manthe, and Miller6 for the analogous ‘‘direct’’ 
and ‘‘correct’’ calculation of the microcanonical rate, i.e., 
the cumulative reaction probability N(E). One can of course
obtain k(T) from N(E), 

`  

k~T!5@2p\Qr ~T!#21 E  dEe2E/kBTN~E!, ~1.3! 
2` 

but use of this expression requires one to have N(E) over a 
signifcant range of E even if k(T) is desired for only one
value of T. The present canonical version of the method
ogy is thus clearly desirable if one wishes to have k(T) for 
only one ~or a few! values of T. 

The purpose of this paper is to apply this fux correlat
approach to the reaction Cl1H2!HCl1H, which is of im-
portance in the chemistry of the atmosphere.7–9 Because it 
has been well studied experimentally,8 and also recently bee
the subject of extensive state-to-state reactive scattering

b!culations by Mielke et al.9~ using a newly developed
a!potential-energy surface,9~ it also serves as an excelle

benchmark system to test this new methodology and dem
strate its effciency. Unlike the earlier work of Thomps
and Miller,1 here we treat nonzero total angular moment
~i.e., J.0! exactly and are thus able to assess the accu
of some of the approximate ways of treating J.0. 

Section II frst summarizes the fux–fux autocorrelati
function methodology, and Sec. III gives specifcs of 
calculations ~basis sets, angular momentum coupling, et!. 
Section IV discusses the results, the comparisons with
periment and the scattering calculations, and the validity
various angular momentum decoupling approximations 
this reaction. Section V concludes with a discussion of 
effciency of the methodology and its promise for furth
application. 

II. SUMMARY OF THEORY 

With an absorbing potential ê included in the real time
propagation, the fux–fux autocorrelation function in E
~1.1b! becomes 
97/107(18)/7194/8/$10.00 © 1997 American Institute of Physics 
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2bĤ /2F̂ e2bĤ /2 i ~Ĥ 1 i ê !t/\F̂ e2 i ~Ĥ 2 i ê !t/\#,Cf f  ~ t !5tr @e e 
~2.1a! 

where 

iˆ 5 ˆ ˆF @H,h~s!#, ~2.1b!
\ 

is the fux operator, with h(s) being the usual step-functio

H 1, s.0 
h~s!5 ~2.1c!

0, s,0. 

In this section the various operators are indicated in the u
abstract notation ~e.g., Ĥ ,F̂ ! and vectors in bracket notation
though in practice they are fnite matrices and vectors in
basis described in Sec. III. The evaluation of Eq. ~2.1a! is 
divided into two steps. First, a Hermitian Lanczos proced
is used to determine the ~small number of! nonzero eigenval-
ues and corresponding eigenvectors of the Boltzmann
fux operator F̂ (b), Eq. ~1.2!. Starting with a random initia
vector uv0&, a Lanczos iteration sequence, including re
thogonalization 

n21 

ˆ ˆuvn&5F~b!uvn21&2 ( uvk&^vkuF~b!uvn21&, ~2.2! 
k50 

for n51,2,..., is used to generate an orthonormal basis s
ning the Krylov subspace $uv0&, F̂ (b)uv0&, F̂ (b)2uv0&,..., 
ˆ (b)n 2bĤ /2F uv0&%. @The action of the Boltzmann operator e 
onto a vector, as required in Eq. ~2.2!, is carried out via the
split operator algorithm.# Diagonalization of the Hermitian
matrix 

Fk,k8 ~b![^vkuF̂ ~b!uvk8&, ~2.3! 

then yields the eigenvectors $uum&% with the largest ~in abso-
lute value! eigenvalues $ f m%, so that F̂ (b) can be repre-
sented in its eigenstate expansion as follows: 

F̂~b!5( f muum&^umu. ~2.4! 
m 

The number of Lanczos iterations required for the con
gence of this procedure is essentially the number of non
eigenvalues of F̂ (b) and thus small. In practice one c
reject the initial trial vector and use the frst one genera
from Eq. ~2.2! as the starting vector in Lanczos procedu
This will guarantee the Lanczos sequence generates 
vectors with eigenvalues in descending order ~of absolute 
values!. One terminates the Lanczos iteration by some a pri-
ori criterion 

u f nu, tol Łu f 1u, ~2.5! 

where f 1 and f n are eigenvalues associated with the frst a
the nth Krylov vector, and tol is a convergence parame
normally chosen between 0.1% and 1%. 

With F̂ (b) given by Eq. ~2.4!, the trace in Eq. ~2.1a! 
becomes 

Cf f  ~ t !5  (  f m  ̂um  ~ t !uF̂ uum  ~ t !&,  ~2.6a! 
m 
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where $uum(t)&% are the time-evolved eigenvectors of F̂ (b) 

2 i ~Ĥ 2 i ê !t/\uum ~ t !&5e uum&. ~2.6b! 

This time evolution thus constitutes the second step of
present procedure, and it is accomplished by the usual m
ods of time-dependent wave packet propagation. We h
used the split-operator algorithm, but others are also 
sible. Cf f  (t) is thus generated step-by-step in time as 
time evolution in Eq. ~2.6b! is carried out. 

Since we are only interested in the time integral of 
fux–fux autocorrelation function, alternate expressions 
be obtained by integrating Eq. ~2.1a! by parts 

t 2E ˆ i ~Ĥ 1 i ê !t/\ĥ e2 i ~Ĥ 2 i ê !t/\#1dt8Cf f  ~ t8!5tr @F~b!e 
0 \  

t 

3  E  dt8tr @ F̂ ~b!ei ~Ĥ 1 i ê !t8/\ê e2 i ~  ̂H2 i ê !t8/\#,p
0 

~2.7a! 

or 

t 2E ˆ i ~Ĥ 1 i ê !t/\ĥ e2 i ~Ĥ 2 i ê !t/\#2dt8Cf f  ~ t8!5tr @F~b!e 
0 \  

t 
ˆ i ~Ĥ 1 i ê !t8/\  2 i ~Ĥ 2 i ê !t8/\#,dt8tr @F~b!e ê e3  E  r 

0 

~2.7b! 

where t is large enough for the integral to converge. Thou
formally equivalent to Eq. ~1.1!, the above expressions act
ally provide a numerical advantage if a discrete variable 
resentation ~DVR! basis is used, because both ĥ and ê ( ê )p r 

are diagonal matrices that can be multiplied at negligible 
ˆcompared to the full matrix of F. If the absorbing potentia

were set to zero, then the second term in Eq. ~2.7! would be 
zero and the overall expression would reduce to the f
position autocorrelation function used previously;3,10 in this 
case, however, t cannot be too large or else fux will reac
the edge of the DVR grid and undergo unphysical ref
tions. The presence of the absorbing potential prevents 
refections, and in this case the frst term vanishes in
t!` limit, i.e., all of the contribution comes from the se
ond term in Eq. ~2.7!, the fux ‘‘picked up’’ by the absorbing
region, similar in the spirit of the fux cross-correlation fun
tion used by Germann et al. for the O1OH!O21H 
reaction.11 This is numerically more stable in the case 
extensive recrossings of the dividing surface, where the 
term in Eq. ~2.7! becomes highly oscillatory. The disadva
tage of this approach is that it usually takes some time fo
wave packet to reach the absorbing region and the resu
propagation time to obtain converged results is longer t
the original fux–fux autocorrelation function method. Fo
direct reaction, it is preferable to keep both terms in Eq. 
~2.7!; i.e., the result converges for shorter values of t than the 
second term alone. Figure 1 illustrates the contribution
each term of Eq. ~2.7!, and their sum, versus time for th
o. 18, 8 November 1997 
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FIG. 1. Contribution of different terms in Eq. ~2.7! vs propagation time for
the Cl1H2 reaction at T5300 °K and J50. The dot–dashed line is th
contribution of the frst term in Eq. ~2.7! ~and goes to zero as t!`!, the 
dashed line is that of the second term ~and becomes the correct result 
t!`!, and the solid line is their sum ~which approaches the correct resu
more rapidly as t!`!. 

Cl1H2!HCl1H reaction at T5300 °K and J50. One can
see that the sum of two terms in Eq. ~2.7! converges much
more rapidly than the second term alone. 

III. DETAILS OF CALCULATION 

A. Coordinate system and Hamiltonian 

For the Cl1H2!HCl1H reaction, we have chosen 
use the Jacobi coordinates of the Cl1H2 arrangement since
this makes it easier to incorporate the symmetry due to
two identical H atoms. Denoting by r the H–H bond dis-
tance, R the distance from Cl to the center-of-mass of H–
and g the angle between r and R, the total Hamiltonian in the
body-fxed frame can be written as12 

1 1 1ˆ ˆ ˆ21Ĥ 5TR1T 1S D jr 22mR2 1 
2mr 2mR2 

3~ Ĵ222 Ĵ21Â 1B̂ !1V̂ ~R,r,g!, ~3.1a!z 

where 

\2 

T̂R52  
2m  

]2 

]R2 , ~3.1b! 

\2 

T̂r52  
2m 

]2 

2 ,]r
~3.1c! 

]2 

ĵ 252\2S  2 1cot g
]g

] 1 
1

]g sin2 g 

]2 

,2 D]c
~3.1d! 

]2 

Ĵ252\2F  2 1cot u 
]u

] 1 
1 

]u sin2 u 

]2 ]2 

3S 2 1 
]f222 cos u

]c

] 

]c 

] D G ,]f
~3.1e! 
J. Chem. Phys., Vol. 107, N
 

 

he 

, 

]
Ĵ 52 i\  , ~3.1f!z ]c 

ic
] i ] ]

Â 5\2 e i cot u 2 1F S D]c sin u ]f ]u 

] ]
3 i cot g 1 , ~3.1g!S D G]c ]g 

2 ic
] i ] ]

B̂ 5\2 e i cot u 2 2F S D]c sin u ]f ]u 

] ] 
3 i cot g 2 . ~3.1h!S D G]c ]g 

Here m is the reduced mass of Cl and H2, and m that of the 
two H atoms. ~u,f! are the polar and azimuthal angles whi
orient R ~which is the body-fxed quantization axis! with 
respect to a space-fxed axis system, and c is the azimuthal
angle of r with respect to R. Ĵ2 is the total angular momen

ˆtum operator, J is the projection operator of total angulz 
ˆmomentum along the body-fxed axis ~R!, and Â and B are 

Coriolis coupling operators. 
The basis for the three Euler angles ~f,u,c! is the set of 

symmetrized Wigner functions 

1 
^fucuJMK;s&[  @DJ

MK ~f,u,c!
A2~11dK0 ! 

J3~21!J1K1sDM2K ~f,u,c!#* ,  ~3.2! 

where s50 or 1 is the parity index for the total space inv
Jsion and DMK(f,u,c) is the usual Wigner function.13 J is 

the total angular momentum quantum number, M the projec-
tion of total angular momentum onto the space-fxed a
and K its projection onto the body-fxed axis ~R!. The matrix 
of Ĥ with respect to this basis is diagonal in J, M , and s 
~and in fact independent of M !, but not in K ~Ref. 14! 

^JMK8;suĤ uJMK;s&  

\2 
ˆ  ˆ ˆ  ˆJ,s  T 1T 1V~R,r ,g!1[HK8,K5dK8,KH  R1Tr g  2mR2 

3@J~J11!22K2#J  
2  

\  
1 ĵ

2mR2~dK8,K11A11dK,0LJK 1  

2  ĵ1dK8,K21A11dK,1LJK 2!, 
~3.3a! 

where 

1 1ˆ ˆ2T 5 j , ~3.3b!S 2mR2 1 Dg 22mr 

6  5AJ~J11!2K~K61!. ~3.3c!LJK 
o. 18, 8 November 1997 
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The parity s determines the range of K and K8, i.e., when 
J1s is even, K, K850,..., J and otherwise K, K851,...,J. 
The operators ĵ 2 and ̂j 6 are defned by 

]2 ] K2 

ĵ 252\2S  2 1cot g 2 D , ~3.4a!
]g ]g sin2g 

]
ĵ 652\  6 2K cot g , ~3.4b!S D]g 

and satisfy 

K Kĵ 2Pj ~cos g!5\2 j ~ j 11!Pj ~cos g!, ~3.5a! 

ˆ K K61j 6Pj ~cos g!5\L6  
jK Pj ~cos g!, ~3.5b! 

where PK
j (cos g) is the associated Legendre function. The

ˆ2 ˆfore j and j 6 are not the usual angular momentum ope
tors; they operate only on the associated Legendre func

B. Basis set 

In the present calculation a discrete variable represe
DVR!15–17 tion ~ has been used for the (r ,R,g) degrees of

freedom. Specifcally, we have used the sinc-function D
developed by Colbert and Miller17 for the r and R coordi-
nates. The grid constant NB , which determines the numbe
of points per thermal de Broglie wavelength 

21/22p 2mkBT 
Dx5 , ~3.6!

NB 
S D\2 

was chosen to be 9–14 for the temperature range 3
1500 °K. At T5200 °K, we found that NB had to be as large
as 23 to give converged results. 

The natural fnite basis representation ~FBR! for the an-
gular degree of freedom, seen from Eqs. ~3.3! to ~3.4!, is the
set of associated Legendre functions $PK

j (cos g)%, but their 
dependencies on the quantum number K makes it awkward
to construct a DVR for the g degree of freedom in the con
ventional way ~i.e., discretizing the FBR based on associa
Legendre quadrature!. We have thus used the K-independent
grid,18,19 i.e., discretizing the FBR using Gauss–Legen
quadrature for all the K-blocks. One can then apply the r
sulting transformation matrix ~rectangular! to construct the
DVR from the FBR.20 

We have also used symmetrized associated Lege
functions to account for H2 exchange symmetry 

1K,p K 2KPj ~cos g!5 $Pj ~cos g!1~21!pPj @cos~p2g!#% 
& 

1 K5 @11~21! j 1p#Pj ~cos g!, ~3.7! 
& 

where p50, 1. The angular kinetic-energy matrices for N 
symmetrized DVR points, after the procedure descri
above, are given by 
J. Chem. Phys., Vol. 107, N
2N21 
2 @11~21! j 1p#2 

Kj i 8,i ~p,K !5 ( $Awi 8Pj ~cos g i 8! 
j 5K 2 

-
-
n. 

ta-

R 

 

0– 

d 

e 

re 

d 

K3@\2 j ~ j 11!#Pj ~cos g i !Awi%, ~3.8a! 

2N21 
@11~21! j 1p#2 

1 
~p,K !5 (j i 8,i 2j 5K11 

K113$Awi 8Pj ~cos g i 8! 

1 K3@\L jK #Pj ~cos g i !Awi%, ~3.8b! 

2 1 
~p,K !5 j i 8,i ~p,K21!. ~3.8c!j i 8,i 

In our calculation, we found N58 – 10 to be adequate. 
In general, one needs to perform calculations for b

even and odd parities, i.e., p50 and 1, and the total rat
constant is given by 

` 

k~T!5Qr ~T!21 E ~ t !#,  ~3.9a!dt@g0C0  
f f  ~ t !1g1C1  

f f  
0 

where Cp
f f(t) is the fux correlation function for parity p, and 

Qr ~T!5g0Q0 ~T!1g1Q1 ~T!, ~3.9b!r r 

where Qp(T) is the reactant partition function for parity p,r 
gp being the nuclear spin degeneracy factor for even and
parities ~in the present case 1 and 3 for p50 and 1, respec
tively!. However, the transition state for Cl1H2 reaction is 
very tight and has a high barrier for H2 internal rotation. 
Therefore the tunneling splittings for H2 internal rotation at
the transition state are small, and one expects the time 
gral of the fux correlation functions for even and odd pa
ties to be similar. This is indeed what we have found. Sim
behavior had also been found for the cumulative reac
probabilities.9~b! This property is used in the actual calcu
tion to reduce the computational cost by half. 

Finally, the primitive set of grid points is truncated 
discarding grid points for which the potential energy 
greater than some cutoff value Vcut and those that lie beyon
the boundary of the absorbing potential. 

C. Approximations for J>0 

The rate constant calculation described above need
be carried out for each value of total angular momentumJ, 
yielding kJ(T), and then the total rate constant is given b

k~T!5 ( ~2J11!kJ~T!, ~3.10! 
J50 

where the factor 2J11 is from the sum over the space-fxe
projection quantum number M . The exact treatment of an
gular momentum requires including the diagonal and 
diagonal K-states in the calculation, as described in Se
III A and III B. In practice, however, the contribution die
off rapidly with increasing K, so that only K-states up to
Kmax53 are necessary to achieve convergence even for 
J. The calculation of kJ(T) for each J is therefore about an
order of magnitude more expensive than the J50 calcula-
tion. 
o. 18, 8 November 1997 
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The usual helicity conserving approximation ~HCA!21 

corresponds to neglecting the off diagonal, K8ÞK, matrix 
elements in Eq. ~3.3!, whereby K becomes a ‘‘good quantum
number.’’ For each (J,K) one thus carries out 
calculation—which is essentially equivalent in diffculty 
the J50 calculation—to obtain kJK(T), and then within this
approximation 

J 
HCAkJ ~T!5 ( kJK~T!. ~3.11! 

K52J 

Again, only K states up to Kmax are necessary for conve
gence. 

The usual HCA, however, does not work very well 
the present Cl1H2 reaction. In general a better approxim
tion of this type is the one suggested by McCurdy 
Miller22 which is based on the instantaneous principal a
of the three-atom system. Specifcally, the body-fxed qu
tization axis is chosen to be the instantaneous axis with
smallest moment of inertia, and the HCA made with t
choice. The Hamiltonian for this principal axis helicity co
serving approximation ~PA/HCA! is 

ˆ JK5Ĥ JKH ~r ,R,g!, ~3.12a!01Erot 

ˆwhere H0 is the J50 Hamiltonian 

\2 ]2 \2 ]2 1 1 
Ĥ 

05 22\2 

]R22 S 2mR2 1 2 D2m 2m ]r 2mr 

]2 ]
3 2 1cot g 1V~r ,R,g!, ~3.12b!S D]g ]g 

JK(r,R,g) is the rotational energy of a symmetric t
~determined by geometry r , R, g! 
and Erot 

JK ~r,R,g!51/2@A~r ,R,g!1B~r ,R,g!#Erot 

3@J~J11!2K2#1C~r ,R,g!K2, ~3.12c! 

where A, B, and C are given in terms of the principal mo
ments of inertia in the usual way ~i.e., A5\2/2IA , etc.!. For 
the present three-atom system these moments of inertia

I C~r ,R,g!51/2~mR21mr2 !21/2@~mR2 !1~mr2 !  

212mR2mr cos 2g#1/2, ~3.13a! 

I B~r ,R,g!51/2~mR21mr2 !11/2@~mR2!21~mr2 !2 

212mR2mr cos 2g#1/2, ~3.13b! 

2I A~r ,R,g!5I B1I C5mR21mr . ~3.13c! 

JK(r,R,g) is thus essentially a centrifugal potential thErot 
adds to the J50 Hamiltonian, Eq. ~3.12b!, and in the lan
guage of spectroscopy one notes that it includes centrif
distortion ~because the rotation constants vary with inter
geometry! but neglects Coriolis coupling. This approxim
tion has also been re-discovered more recently by Bowm23 

~termed by him the ‘‘adiabatic rotation approximation’’! and 
used quite successfully for determining energies of bo
and metastable states of the HCO system. 
J. Chem. Phys., Vol. 107, N
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The simple J-shifting approximation ~JSA!24 results if 
one takes the three rotation constants in Eq. ~3.12c! to be 
constant, i.e., independent of (r , R, g), A‡, B‡, and C‡. 
These are typically the rotation constants evaluated at s
reference geometry ~e.g., the transition state!. The rotation
energy of Eq. ~3.12c! then enters the Hamiltonian of Eq
~3.12a! as a constant, so that 

JK/kBTJS 2E~T!5k0~T!e rot ,kJK ~3.14a! 

with 
JK51/2~A‡1B‡!@J~J11!2K2#1C‡K2 ,Erot ~3.14b! 

where k0(T) is the J50 rate constant. In this case the su
over J and K can be carried out to give 

kJS ‡ ~T! ~3.15a!~T!5k0~T!Qrot 

where 

JK/kBT‡ 2EQrot ~T!5( e rot . ~3.15b! 
J,K 

Finally, we note that the transition state for the Cl1H2 

reaction is linear, so that C‡5`, requiring that K50. 

D. Time propagation 

The split operator algorithm has been used for b
imaginary ~Boltzmann operator! and real time propagation
The details have been given previously1 and will not be re-
peated here. We only emphasize that for both J50 and the 
helicity conserving approximation case, the angular kine

ˆenergy operator, Tg , is diagonal in the FBR. To form th
propagator in the DVR, one only needs to exponentiate T̂ 

g in 
the FBR and then apply the FBR-DVR transformation. Wh
the Coriolis coupling terms are included, the kinetic-ene
matrix is block-tridiagonal in the FBR. In principle, to for
the propagator using the same strategy, one needs to d
nalize all the ( j ,K) blocks for K<min(J,2N21). As noted, 
however, the contribution dies off rapidly with increasi
K;20 we found that Kmax53 gives results that are accurate
within a few percent error compared with including the f
projections, and thus used this value for our thermal 
constant calculation. 

E. Dividing surface and absorbing potential 

The dividing surface appearing in the F̂ and ĥ operators 
is defned by 

s5r ~H12H2 !2r ~Cl2H2 !10.7750, ~3.16! 

in atomic units. The absorbing potential is chosen to b
quartic form 

s2s0
4 

e5l , ~3.17!S Dsmax2s0 

where smax563.5 bohr and s0561.4 bohr, with ‘‘1’’ de-
noting the product valley and ‘‘2’’ the reactant valley.
o. 18, 8 November 1997 
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FIG. 2. Flux–fux autocorrelation function for J50 calculation: ~a! T 
5300 °K, ~b! T5800 °K, ~c! T51500 °K. 

Within a variation of 61 bohr, the calculations were inse
sitive ~in terms of both effciency and accuracy! to the posi-
tion of dividing surface. 

IV. RESULTS 

Figure 2 shows the fux–fux autocorrelation function 
J50 for several values of temperature T. As expected, for a
J. Chem. Phys., Vol. 107, N
r 

FIG. 3. Arrhenius plot of the thermal rate constants at J50. 

direct barrier crossing reaction such as this, Cf (t) falls to 
zero in a time of order \b ~.27 fs at 300 °K, .5 fs  at  
1500 °K, etc.!. This is the type of behavior for which tran
tion state theory is typically an excellent approximation. 
the highest temperature in Fig. 2 one does begin to s
small negative lobe in the correlation function, indicative
recrossing fux, i.e., in a classical picture, trajectories 
cross the dividing surface more than once and thus c
errors in transition state theory. It is well known25 that these
effects in general arise at suffciently high temperature. 

Figure 3 shows the J50 rate constant k0(T) ~i.e., the 
integral of the correlation functions in Fig. 2! as a function of
T. It is very Arrhenius-like, showing some curvature in t
high-temperature region, and is in quantitative agreem
with the results of Mielke et al.9~b! scattering calculations. 

Figure 4 shows the J-dependence of kJ(T) for several 
temperatures; as computed via the exact method describ
Sec. III but which is qualitatively the same for the vario
approximate methods. In the simple J-shifting approxima-
tion, Eq. ~3.15! show ln kJ(T) to be a linear function of J(J 
11), and Fig. 4 shows that this behavior is a good desc
tion of the exact results as soon as J is larger than ;3 or  4.
This simple dependence on J is extremely useful, of course
for it means that one only needs to carry out calculatio
either exactly or approximately, for a few values of J and 
then interpolate between them in order to evaluate the 
rate via Eq. ~3.10!. 

The total rate constants are shown in Fig. 5: The s
line is the result of our full dimensional calculation, i.
treating J.0 exactly as described in Sec. III. Even he
though, we did not carry out the calculations for each va
of J, but only at the points shown in Fig. 4 and interpola
to carry out the sum over J. We note that the effective rota
tion constant obtained from these plots 

d 
Beff[2kBT ln kJ~T!, ~4.1!

d@J~J11!# 

increases slightly, from ;1.9 to 2.3 cm21, as  T  increases
from 200 to 1500 °K. 
o. 18, 8 November 1997 
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FIG. 4. ln kJ(T) vs  J(J11) for several temperatures: ~a! 300–500 °K, ~b! 
1000–1300 °K. 

The circles in Fig. 5 are the results Mielke et al.9~b! ob-
tained via conventional quantum scattering calculatio
These authors made explicit calculations for J up to 6 and 
then extrapolated for higher J using the variational transition
state rotation constant B‡ .2.3 cm21. One sees that there i
excellent agreement between their results and ours, with
slight difference at the lowest temperature being due to t
extrapolation of J values. 

The dashed line in Fig. 5 shows the results of the sim
J-shifting approximation, Eq. ~3.15!. The agreement with ac
curate results is excellent at low temperature but prog
sively degenerates at higher temperature, being a facto
;2.5 too small at 1500 °K. This is primarily due to the fa
that this approximation includes only K50, and K.0 con-
tributes progressively more as T increases. Nevertheless, fo
the expense of only the J50 calculation this approximation
allows one to obtain an estimate of the complete rate c
stant and is thus extremely useful ~at least for reactions such
as this one that are dominated by a single activation barr!. 

The triangles in Fig. 5 show the results of the princip
axis helicity conserving approximation, Eq. ~3.11! with Eqs. 
~3.12! and ~3.13!, and they are seen to be in excellent ~10% 
or better over the entire temperature range! agreement with 
J. Chem. Phys., Vol. 107, N
s. 
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FIG. 5. Arrhenius plot of the thermal rate constants: The solid is the pre
accurate quantum result, the dashed line is the result of the simple J-shifting 
approximation, the circles are results from Ref. 9~b!, and the triangles are
results of the principal axis helicity conserving approximation. 

the exact treatment for J.0. This is extremely encouragin
since the calculation for each J and K is essentially the effort
of a J50 calculation. And as noted above, one only need
carry out calculations for a few values of J and K in order to 
perform the summation over them to obtain the total r
constant. 

Comparison of theoretical results with experiments 
been done previously by Mielke et al.9~b! Our more accurate
quantum calculations does not alter the trend in that comp
son, i.e., the theoretical results are larger than the experim
tal ones at lower temperatures and the agreement gets 
at higher temperatures. At this rigorous level of theory, 
discrepancies at lower temperatures can only be cause
the inaccuracy of the potential-energy surface, as 
pointed out previously.9~b! It would be an interesting future
work to apply our method to this reaction using a more 
curate potential. 

V. CONCLUDING REMARKS 

The fux correlation function methodology thus provid
an effcient way for calculating rate constants ‘‘directly’’ a
‘‘correctly,’’ as illustrated here for the Cl1H2!HCl1H re-
action. For simple barrier crossing reactions such as this
correlation function decays to zero in a very short time
this case the real time propagation part of the calculatio
only slightly more expensive than the evaluation of the B
zmannized fux operator, which is essentially the calcula
performed in a quantum version of transition state theory~If 
the reaction dynamics is more complicated, e.g., involvin
collision complex,11 then longer time propagation is re
quired. Here, of course, transition state theory is not e
approximately correct.! 

The calculations presented here are quite effcient 
easily implemented. One can utilize the standard method
time-dependent wave packet propagation for both the im
nary ~i.e., Boltzmann operators! and real time propagation
Calculation of the J50 rate constant, k0(T), requires about
o. 18, 8 November 1997 
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;1 – 5 min on an IBM RISC/6000 590 computer. Within t
J-shifting approximation—which is of reasonable accura
except for the highest temperatures—this is essentially
that is needed to obtain the total rate constant k(T). The 
principal axis helicity conserving approximation—which 
quite accurate for all values of T—requires calculations fo
;8 – 10 values of J and ;3 to 4 values of K, each of which
is equivalent to a J50 calculation; it is thus ;30 times more
expensive than the J50 calculation. The fully rigorous trea
ment of J.0 is  ;100 times the expense of a J50 calcula-
tion and is thus still not unduly expensive for the pres
application. Though the J-shifting approximation only
makes sense for the case of a simple barrier cros
reaction—where the reference geometry is that of the tra
tion state—the principal axis helicity conserving approxim
tion should be reasonable much more generally ~e.g., even if 
a collision complex is involved! since the rotation constan
vary with geometry ~centrifugal distortion!. 

As with any fully quantum-mechanical calculation, ho
ever, the computational expense grows exponentially w
the increasing size of the system ~i.e., the number of degree
of freedom!. One way to escape this dilemma is to exp
the fact that most reactions effectively involve only a few 
degrees of freedom. For the remaining degrees of freed
reduced-dimensionality approaches can be used to extr
good approximation to the full-dimensional rate consta
There is certainly much to be done to explore such meth
The methodology used in this paper offers a rigorous 
inexpensive treatment of the important degrees of free
quantum mechanically and should fnd wide applicability
future work along such directions. 
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