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We present a method for obtaining the thermal rate constant directly ~i.e., without frst solving the 
state-to-state reactive scattering problem! from the time integral of the fux-fux autocorrelation 
function, Cf f  (t). The quantum mechanical trace involved in calculating Cf f  (t) is effciently 
evaluated by taking advantage of the low rank of the Boltzmannized fux operator. The time 
propagation is carried out with a Hamiltonian which includes imaginary absorbing potentials in the 
reactant and product exit channels. These potentials eliminate refection from the edge of the fnite 
basis and ensure that Cf f  (t) goes to zero at long times. In addition, the basis can then be contracted 
to represent a smaller area around the interaction region. We present results of this method applied 
to the O1HCl reaction using the J-shifting and helicity conserving approximations to include 
nonzero total angular momentum. The calculated rate constants are compared to experimental and 
previous theoretical results. Finally, the effect of deuteration ~the O1DCl reaction! on the rate 
constant is examined. © 1997 American Institute of Physics. @S0021-9606~97!01701-7# 
 

I. INTRODUCTION 

As implied by the title, this article is a continuation of 
our quest to fnd the most powerful general procedure for 
calculating the thermal rate constant of a bimolecular chemi-
cal reaction correctly and directly, i.e., one that is in prin-
ciple exact ~given a potential energy surface! and also one 
that avoids having to solve explicitly the complete state-to-
state quantum reactive scattering problem. Our efforts,1,2 and 
those of a number of other workers,3–11 are based on the 
formally exact expression for the rate constant as the time 
integral of the fux-fux autocorrelation function12,13 

` 

k~T!5Qr ~T!21 E dt  Cf f  ~ t !,  ~1.1a! 
0 

where 

iĤ t* /\F  2 iĤ tCf f  ~ t !5tr@ F̂e c ˆ e c /\#, ~1.1b! 

or, formally equivalently, as the long time limit of the fux-
side correlation function13,14 

k~T!5Qr ~T!21 lim Cf s~ t !,  ~1.2a! 
t!` 

where 

iĤ t  2 iĤ tCf s~ t !5@ ĥ e  * c /\F̂e c /\#. ~1.2b! 

ˆIn Eqs. ~1.1! and ~1.2! H is the Hamiltonian operator of the 
ˆmolecular system, F is the symmetrized fux operator ~de-

fned with respect to some dividing surface through the in-
teraction region!, ĥ is a step function that is 1 or 0 on the 
reactant or product side of the dividing surface, respectively, 

a!Electronic mail: miller@neon.cchem.berkeley.edu 
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and tc5t2 i \b/2, where b is related to temperature in the 
usual way, b5(kBT)21; Qr(T) is the reactant partition func-
tion per unit volume. 

Our most recent work2 ~hereafter referred to as Part I! on 
this topic utilized Eq. ~1.2! and emphasized that, by evaluat-
ing Cf s(t) at a suffciently large but fnite time t, one could 
avoid having to introduce an absorbing potential to enforce 
outgoing wave boundary conditions. Though this is indeed 
true, our present feeling is that the price paid for dispensing 
with the absorbing potential is too great, i.e., the size of the 
L2 basis ~or grid! must be enlarged too much to make this the 
optimum procedure. This becomes particularly evident when 
dealing with multidimensional systems where the fux exit-
ing the interaction region has a broad distribution of transla-
tional energies: the fux exiting most rapidly will hit the edge 
of the grid ~and undergo unphysical refection! before the 
more slowly exiting fux has escaped the interaction region. 

The primary change in strategy from Part I, therefore, is 
to utilize absorbing potentials to make the L2 basis ~e.g., a 
discrete variable representation15–17! as small as possible—in 
essentially the same way they have been used 
before18–24—and to put up with the minor nuisance of having 
to perform test calculations to insure that the results are in-
sensitive to them. 

Once an absorbing potential is added to the Hamiltonian, 

Ĥ !Ĥ 2 i ê , ~1.3! 

one can no longer use Eq. ~1.2! to obtain the rate constant 
~because then Cf s(t)!0 as  t!`). Eq. ~1.1! is still valid, 
however, because only the long time behavior is infuenced 
by the absorbing potentials, and the exact Cf f  (t)!0 as
t!`  and is thus unaffected by them. Section II describes the 
general procedure for evaluating Cf f  (t), where again a key 
feature is to exploit the low rank of an effective fux operator 
7/106(1)/142/9/$10.00 © 1997 American Institute of Physics 
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to minimize the number of operations of the time evolution 
operator that is required. Of previous work, the methodology 
presented in Section II is most akin to that of Park and 
Light4~b! and Brown and Light,5 though there are key differ-
ences, primarily in the basis used to evaluate the trace and in 
the use of iterative methods for the Boltzmann operator and 
the time evolution operator. 

Section III then describes the specifcs of the methodol-
ogy with regard to a nontrivial application, a full three di-
mensional calculation of the rate constant for the 
O1HCl!OH1Cl reaction. Section IV discusses the results 
of these calculations including the H!D isotope effect, over 
the temperature range T5200– 700 K. 

II. EVALUATION OF THE FLUX-FLUX 
AUTOCORRELATION FUNCTION 

A crucial element in the effcient calculation of the fux 
correlation function of Eq. ~1.1b! is to exploit the low rank of 
some appropriate operator. ~The operand of the trace in Eq. 
~1.1b! is itself of low rank, but it is not possible to exploit 
this as was done in Part I for Cf s(t), because here we need 
Cf f(t) for a range of t while in Part I we needed Cf s(t) only 
for one ~large! value of t.! For this purpose it is useful to 
‘‘unbundle’’ the Boltzmann and ~real! time evolution opera-
tors in Eq. ~1.1b! and write the correlation function in the 
following equivalent form 

ˆ iĤ t/\F  2 iĤ t/\#,Cf f~ t !5tr @F~b!e ˆ e ~2.1a! 

where F̂ (b) is the Boltzmannized fux operator ~similar to 
the one defned by Park and Light4~b!!, 

ˆ 2bĤ /2F̂ e2bĤ /2F~b!5e . ~2.1b! 

Though the fux operator F̂ itself is not of low rank for a 
multidimensional system, the Boltzmannized fux operator of 
Eq. ~2.1b! is effectively so. To see this, let us suppose for 
illustrative purposes that the reaction coordinate ~the one de-
gree of freedom for motion normal to the dividing surface! 
were separable from all the degrees of freedom for motion
the dividing surface ~the ‘‘activated complex’’!; F̂ (b) would 
then be given by 

ˆ ‡ ‡ˆ ˆ 2bH ˆ ‡ 2bEnFsep  ~b!5F1De  5F1D(  un‡&^n u e , ~2.2! 
‡n 

ˆwhere F1D is the one dimensional ~1D! fux operator ~of rank 
2!4,25 ˆ ‡and H the Hamiltonian for the activated complex, 
with eigenfunctions un‡& and eigenvalues En‡. The effective 
rank of F̂ 

sep(b) is thus twice the number of states of the 
activated complex that are signifcantly populated thermally 
at temperature T. One expects the rank of the true Boltzman-
nized fux operator to be similar. 

The frst step of the calculation is therefore to fnd the 
eigenfunctions of the Boltzmannized fux operator, F̂ (b) of  
Eq. ~2.1b!, that have the largest ~in absolute value! eigenval-
ues, and the Lanczos algorithm26 is ideal for this purpose. 
Starting with an initial random unit vector v0 ~in a fnite basis
set representation!, the sequence of Krylov unit vectors 
$vn% is generated by 
J. Chem. Phys., Vol. 106,
n 

v1}F~b!Łv01SO, 
~2.3! 

v2}F~b!Łv11SO, 

etc., where ‘‘SO’’ implies a Schmidt orthogonalization to 
previous vectors. The matrix of F(b) in this orthonormal 
basis, 

Fk,k8 ~b!5vk 
†
ŁF~b!Łvk8, ~2.4! 

is generated automatically by this procedure. Each Lanczos 
iteration, i.e., each new Krylov vector generated via Eq. 
~2.3!, requires one action of F(b) onto a vector, and the 
nontrivial aspect of this is the action of the Boltzmann op-
erator e2bH/2 onto a vector, which is accomplished by the 
split-operator algorithm described in Section III. 

Diagonalization of this ~relatively small! matrix 
Fk,k8(b) produces the eigenvectors $un% with the largest ~in 
absolute value! eigenvalues $ f n%, so that F(b) is then repre-
sented as 

†F~b!5 ( f nŁunu , ~2.5!n 
n 

and the trace for the fux correlation function in Eq. ~2.1a! is 
readily evaluated to give 

†Cf f~ t !5  (  f nun  ~ t !ŁFŁun  ~ t !,  ~2.6! 
n 

where un(t) is the time evolved eigenstate of F(b),  

un  ~ t !5e2 iH t/\
Łun  .  ~2.7! 

This ~real! time evolution is also carried out by the split-
operator algorithm, which is the method of choice since it 
produces, at no additional computational effort, the time 
evolved state—and thus the fux correlation function via Eq. 
~2.6!—at all intermediate times necessary to perform the in-
tegral of Cf f(t).  

Also, since the split-operator algorithm generates the 
time evolution sequentially from one time step to the next, 
the time integral of Cf f(t) can be evaluated simultaneously
while doing the time evolution, thereby alleviating the need 
to store the vectors un(t) as a function of t. Specifcally, if 
the time evolution is carried out in time increments Dt, then 
the time integral of the fux correlation function on this grid 
of time values (t l5 l Dt,l 50,1, . . . ,)  gives 

k~T!5Qr ~T!21 ( wlCf f~ t l !,  ~2.8! 
l 50 

where $wl% are the weights for the numerical time integration 
~e.g., trapezoid rule, or Simpson’s rule, etc.!. With Eq. ~2.6! 
this becomes 

†k~T!5Qr ~T!21 ( f n( wlu ~ t l !ŁFŁun ~ t l !. ~2.9!n 
n l50 

Since the split-operator algorithm ~see Section III D! gener-
ates the time evolution by the iterative process 

un ~ t l 11 !5e2 i HD t/\
Łun ~ t l !, ~2.10! 
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FIG. 1. The Jacobi coordinates of the H1OCl arrangement. 

after un(t l) is used in Eq. ~2.9! to obtain its contribution to 
the rate and in Eq. ~2.10! to produce un(t) at the next time 
step t l 115( l 11)Dt, it can be discarded. 

To summarize the overall procedure, absorbing poten-
tials are used to keep the grid ~or other L2 representation! as 
localized about the interaction region as possible. A Lanczos 
calculation is frst carried out to obtain all the eigenvectors of 
the Boltzmannized fux operator which have suffciently 
large ~in absolute value! eigenvalues to contribute to the rate; 
this is approximately twice the number of states of the acti-
vated complex that contribute to the rate. Each of these 
eigenvectors is time evolved by the split-operator algorithm 

2bĤ /2~which is also used to generate the operator e in 
F̂ (b)) and the time integral of Cf f(t) evaluated simulta-
neously. 

Section III gives more specifcs of the methodology with 
regard to the O1HCl reaction. The signifcant differences 
from the earlier work of Light and co-workers4,5 are the use 
of the eigenstates of F̂ (b) as the basis to evaluate the trace 
~and the Lanczos method to fnd them! and an iterative 
method ~split operator! to carry out the real ~and imaginary! 
time evolution. 

III. DETAILS OF CALCULATION 

A. Coordinate system and J 50 Hamiltonian 

We have chosen to use the Jacobi coordinates of the 
H1OCl arrangement as shown in Figure 1: r is the O–Cl 
bond distance, R the distance from H to the center-of-mass
of O–Cl, and g the angle between r and R. These coordi-
nates describe the interaction region well, and they provide a 
framework for approximate angular momentum decoupling 
schemes ~such as the helicity conserving approximation or 
the J-shifting approximation27! since to a good approxima-
tion one expects the projection of the total angular momen-
tum along the O–Cl axis to be conserved ~because the H 
atom is so light compared to O and Cl!. 

The J50 Hamiltonian in this coordinate system is given 
by 

\2 ]2 \2 ]2 1 1 
Ĥ 52  2  1  l̂  2  

]R2  2  S D22mR  2m r  ]r  2mRR2  1  
2m r r  

ˆ1V~R,r ,g!, ~3.1! 

where l̂ 2 is the orbital angular momentum operator associ-
ated with the motion of H about the center of mass of O–Cl. 
J. Chem. Phys., Vol. 106,
mR and m r are the reduced masses associated with the coor-
dinates R and r , respectively. 

B. Nonzero total angular momentum 

We have included the effects of nonzero total angular 
momentum by means of two approximate methods. In the 
J-shifting approximation,27 it is assumed that rotational mo-
tion and internal motion are separable, so that the rotational 
energy EJK  simply adds to the J50 Hamiltonian of Eq. 
~3.1!, and furthermore, EJK  is usually approximated by using 
rotation constants corresponding to the transition state geom-
etry of the potential energy surface. Following Koizumi 
et al.,28 the transition state geometry is assumed to be a sym-
metric top and the rotational energy levels are given by 

J~J11!\2 1 1 
EJK5  1 2  K2\2,  ~3.2!S D2I B 2I A 2I B 

where the moments of inertia I B and I A are effectively that of 
O–Cl and of H about the O–Cl axis, respectively. The values 
used by Koizumi et al. are I B54.163105 a.u. and 
I A51.703103 a.u. The total rate constant can then be ob-
tained by a single calculation for J50 as  

k~T!5kJ50~  T!QJS~T!,  ~3.3a! 
J 

QJS~T!5 ( ~  2J11! (  e2bEJK,  ~3.3b! 
J50  K52J  

where QJS(T) is the rotational partition function. 
The centrifugal sudden, or helicity conserving approxi-

mation ~HCA!, is a more sophisticated approximation in 
which the Coriolis coupling terms in the body-fxed repre-
sentation of the Hamiltonian are neglected.29 A difference in 
our present treatment from the usual helicity conserving ap-
proximation is that we have chosen the diatom vector r ~the 
O–Cl vector! as the body-fxed quantization axis—because
the projection of total angular momentum onto it is most 
nearly conserved—rather than the atom-diatom vector R as 
is usually done.30 This results in the following term, 

Ĥ 
HCA5 

@J~J11!22
2 

K2#\2

, uKu<min~J,l !, ~3.4!
2m r r 

being added to the J50 Hamiltonian of Eq. ~3.1!. Within 
this approximation J and K are conserved quantum numbers 
and appear simply as parameters in the Hamiltonian. One 
calculates the rate via Eq. ~2.9! for each J and K, and then 
the total rate constant is given by 

J 

k~T!5 ( ~2J11! ( kJK~T!.  ~3.5! 
J50 K52J  

The helicity conserving approximation is thus more ex-
pensive to apply than the J-shifting approximation because
the latter requires only the J50 calculation ~cf. Eq. ~3.3!! 
whereas the former requires a separate calculation—each of 
which is essentially the effort of the J50 calculation—for 
each value of J and K. In practice, though, things are greatly 
simplifed because the dependence of kJK  on J and K is very 
simple. For example, if the J-shifting approximation were 
accurate, then Eq. ~3.3! shows the J and K dependence is 

ln kJK~T!5constant2aJ~J11!2hK2. ~3.6! 
 No. 1, 1 January 1997 
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It will be seen in Section III D that Eq. ~3.6! is not quantita-
tively correct, but nevertheless one needs to carry out calcu-
lations for only a few values of J and K and interpolate 
between them in order to evaluate the sum in Eq. ~3.5!. 

C. Basis set 

We have chosen to use a discrete variable representation
~DVR! basis.15–17 This has the advantages that the Hamil-
tonian is sparse in a multidimensional case and no integrals 
over the potential need to be evaluated. Specifcally, we have 
used the radial sinc-function DVR developed by Colbert and 
Miller 17 for the r and R coordinates and a Gauss-Legendre
DVR for the g coordinate. In the case where the HC approxi-
mation is used, an associated Legendre DVR is used since 

31–34 the projection quantum number is nonzero. 
The basis set is defned by the parameters NB , Ng , 

Vcut  , and Rmax  . The radial sinc-function DVR has evenly 
spaced points with the grid spacing Dx determined by the 
maximum kinetic energy in the problem. The grid constant, 
NB , determines the number of points per thermal de Broglie 
wavelength for the R and r coordinates: 

21/22p 2mkBT 
Dx5 S D . ~3.7! 

\2NB 

For the present applications we have found NB511–  13 to be
suffciently large. Ng is the number of Gauss-Legendre DVR 
points used for the g coordinate ~usually, Ng.30). A ‘‘raw’’ 
grid is laid down in the Jacobi coordinates of the H1OCl 
arrangement and truncated by an energy cuttoff: if the poten-
tial energy at a DVR point is greater than Vcut, that point is 
discarded. The grid is also truncated in the asymptotic reac-
tant, O1HCl, valley if the translational Jacobi coordinate is 
greater than Rmax  . It is similarly truncated in the OH1Cl 
and H1OCl valleys using the translational Jacobi coordi-
nates of those arrangements. 

D. Time propagation 

The Hamiltonian in Eq. ~3.1! can be written as 

ˆ ˆ ˆ ˆĤ 5TR1Tr1Tg1V, ~3.8! 

including the total angular momentum centrifugal potential 
ˆin the term V. Note that the radial kinetic energy operators,

ˆ ˆTR and Tr , do not commute with the angular kinetic energy 
ˆ ˆoperator Tg or the potential operator V. Following Zhang and

Zhang35 we frst form a split-operator propagator by dividing 
the Hamiltonian into the radial kinetic energy terms and the 

ˆangular kinetic energy plus the potential. Noting that TR and 
T̂ commute with each other, this gives r 

ˆ ˆ2 i ~Ĥ 2 i ê !Dt/\ 2 iTRDt/2\ 2 iT  Dt/2\e .e e r 

2 i ~ T̂ 
g1V̂2 i ê!Dt/\ 2 i T̂ 

rDt/2\ 2 i T̂ 
RDt/2\ 3e e e . ~3.9! 

ˆSince Tg and V̂ also do not commute, another split-operator 
propagator is formed for the central term: 
J. Chem. Phys., Vol. 106,
ˆ 1V̂ ˆ ˆ 2 i e ˆ2 i ~T 2 i ê!Dt/\ 2 iT  Dt/2\ 2 i ~V ˆ !Dt/\ 2 iT  Dt/2\g g ge .e e e . 
~3.10! 

Then the fnal form of the propagator in terms of the indi-
vidual 1D propagators is given by 

ˆ ˆ ˆ2 i ~Ĥ 2 i ê !Dt/\ 2 iTRDt/2\ 2 iT  Dt/2\ 2 iT  Dt/2\e .e e r e g 

ˆ 2 i ê !Dt/\ ˆ ˆ ˆ2 i ~V 2 iTgDt/2\ 2 iTrDt/2\ 2 iTRDt/2\3e e e e . 

~3.11! 

The 1D propagators are applied sequentially using a sparse 
matrix multiplication scheme. Since only the 1D kinetic en-
ergy matrices and the values of the potential need to be 
stored, the memory requirements are quite low: usually less 
than 10 MB of core memory and never more than 30 MB 
even for the largest basis of about 19 000 DVR grid points. 
The optimum time step is determined by calculating the rate 
constant for successively smaller Dt until the result does not 

2bHchange. The Boltzmann operator e
ˆ /2 is applied using the 

same method but in imaginary time, Dt!2 i \Db/2 ~and 
without the absorbing potentials!. 

For the radial coordinates an analytical form for the free 
particle propagator in the sinc-function DVR can be found in 
terms of error functions. In addition, in the DVR the poten-
tial energy propagator is approximated as a diagonal matrix 
with the diagonal elements equal to the exponential of the 
potential evaluated at the specifed DVR point. The angular 
kinetic energy propagator in the Gauss-Legendre DVR is ap-
plied to a vector by transforming to the fnite basis represen-

ˆtation of Legendre polynomials where Tg ~and thus 
ˆ2 iT  Dt/2\)ge is diagonal. The diagonal propagator operates

and then the resulting vector is transformed back to the 
DVR. 

E. Dividing surface and fux operator 

We note that there exist multiple expressions for the fux 
operator that do not possess identical numerical properties in 
an L2 basis representation. We have chose to express the fux 
operator as 

ˆF̂ 5 
i 

@H,h~s~q!!#,  ~3.12!
\ 

because it is more straightforwardly generalized to higher 
dimensions and is easily applied with a sparse matrix multi-
ply routine. It is especially more convenient than the differ-
ential form when the dividing surface—defned by the equa-
tion s(q)—is expressed in terms of coordinates other than 
those used to represent the Hamiltonian. In the DVR, the 
matrix elements of the fux operator are easily evaluated as 

i 
T j , j 8@h~sj 8!2h~sj !#, ~3.13!Fj , j 85 

\ 

where h(sj ) is the step function evaluated at the j th DVR
point, and T j , j 8 is the kinetic energy matrix. The dividing
surface used in this study is defned by r OH2r HCl10.2950 
~with all distances in atomic units!. 
 No. 1, 1 January 1997 
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F. Absorbing potential 

The absorbing potential is taken to be a function of the 
translational Jacobi coordinate in each arrangement,
et5et(Rt). There are several satisfactory choices for the 
functional form of the absorbing potential. However, any 
choice must turn on slowly enough not to cause refection, 
yet be strong enough to absorb all outgoing fux. We have 
found the quartic potential to work well, 

4Rt2R0,t 
et~Rt!5lS D , ~3.14!

Rmax,t2R0,t 

where t is the arrangement index. R0,t and Rmax,t  are the 
starting and ending points of the absorbing potential in the 
t arrangement. l is a strength parameter representing the 
maximum value of the absorbing potential, generally it is 
taken to be about 1 eV. The beginning of the absorbing strip 
is chosen such that the imaginary potential has signifcant 
value only where the interaction potential is small. 

IV. RESULTS AND DISCUSSION 

We have calculated the thermal rate constants for the 
O1HCl reaction on the Koizumi, Schatz, and Gordon 
~KSG!28 potential energy surface which is an analytical ft to 
ab initio calculations,28,36 but with the barrier height scaled 
down from 18.8 to 8.5 kcal/mole to match the experimental
rate37 at T5295 K. This reaction provides a rigid test of a 
method for calculating thermal rate constants. The heavy 
masses involved demand a large basis and the heavy-light-
heavy nature of the reaction requires that the correlation 
function be calculated for long times. 

There have been numerous experimental measurements
of the thermal rate constant for the O1HCl reaction,37–42 in 
addition to several theoretical studies.28,38,43,44 Brown and 
Smith38 and Persky and Broida43 carried out quasiclassical
trajectory calculations on semi-empirical London-Eyring-
Polanyi-Sato ~LEPS! surfaces. These surfaces all featured a 
collinear transition state geometry. However, ab initio calcu-
lations on the system indicate that the transition state is sig-
nifcantly bent with an O–H–Cl angle of about 135°.28,36,45 

The KSG potential energy surface, with a bent transition 
state, was originally used by Koizumi et al. to calculate total 
and state-selected thermal rate constants. These calculations 
were carried out by integrating coupled channel equations in 
hyperspherical coordinates to obtain the state-to-state reac-
tion probabilities that were then used to obtain the rate con-
stants ~with a J-shifting approximation!. Moribayashi and 
Nakamura have also carried out quantum reactive scattering 
calculations on the KSG surface ~as well as a LEPS surface 
of Persky and Broida! by integrating coupled channel equa-
tions in hyperspherical coordinates.44 They obtained state-
selected and cumulative reaction probabilities as well as 
state-selected ~but not total! rate constants. In addition they 
examined different approximations for including the effects 
of nonzero total angular momentum. 

Recently, ab initio calculations were carried out and a 
potential energy surface obtained by Ramachandran
Senekowitsch, and Wyatt with a barrier height of 17.8 
J. Chem. Phys., Vol. 106,
FIG. 2. The fux-fux autocorrelation function for the O1HCl reaction at 
T5300 K. The units of the correlation function are ~atomic units of time!22. 

kcal/mole.45 This is in reasonable agreement with the ab ini-
tio barrier height of 18.8 kcal/mole used in the KSG surface 
before scaling. Their best ab initio estimate of the barrier 
height is below 11 kcal/mole46 compared to 11.9 kcal/mole 
obtained by Gordon et al.36 Rate constants have not yet been 
computed on this surface. 

The KSG potential energy surface has a bent transition 
state geometry with an O–H–Cl angle of 133.4° and a bar-
rier height of 8.5 kcal/mole.28 The O1HCl!OH1Cl reac-
tion is endothermic. In contrast, the H1OCl asymptotic ar-
rangement is ;40 kcal/mole higher in energy than O1HCl 
and is therefore not a relevant product channel. Thus we 
refer to OH1Cl as ‘‘products’’ without ambiguity. 

There is an excited (3A8) electronic state surface which 
is degenerate at linear geometries with the (3A9) ground 
state. The details of this surface are not fully known and it is 
not included in the scattering calculations here. However, 
following Koizumi et al.28 the rate constants presented here 
have been multiplied by the factor 

2228/T1e2326/T!f ~T!53/~ 513e ~4.1! 

to approximately account for collisions that end up on the 
excited state as opposed to the ground state surface. 

Figure 2 shows the J50 fux-fux autocorrelation func-
tion for the O1HCl reaction at T5300 K. At very short 
times the correlation function decays rapidly and goes 
through zero around 7 fs, corresponding to an initial passage
of fux across the dividing surface towards products. This is 
followed by a negative lobe indicating fux returning across 
the dividing surface from products to reactants. It is expected 
that a heavy-light-heavy system such as O1HCl should ex-
hibit signifcant recrossing of the transition state. In a classi-
cal picture the H atom in the region of the transition state is 
trapped between the massive O and Cl and bounces back and 
forth between these two collision partners. This is manifested 
in the oscillations in the correlation function—the negative 
lobe is immediately followed by a positive one representing
a second passage of fux towards products. ~Of course the 
oscillations observed depend on the position of the fux di-
 No. 1, 1 January 1997 
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FIG. 3. The fux-fux autocorrelation function for the O1HCl reaction at 
T5700 K. 

viding surface that was not optimized here for minimum re-
crossing.! The correlation function eventually dies to zero 
around 50 fs. This is twice the time that would be expected
in the case of a direct reaction ~which would be ;\b.25 

13fs!. 
Figure 3 shows the J50 fux-fux autocorrelation func-

tion for the O1HCl reaction at T5700 K. This correlation 
function is similar to that shown in Fig. 2 for T5300 K. 
There is a rapid initial decay to zero followed by a negative 
lobe and then a postive lobe. At this temperature the corre-
lation function decays to zero in approximately 35 fs ~cf. 
\b.11 fs!. However, in this case the negative lobe is much 
smaller ~relative to the initial value of the correlation func-
tion! than for the lower temperature, while the following 
positive lobe is about the same magnitude. However the 
smaller oscillations observed at T5300 K are not present 
here. While in a variational transition state theory picture the 
optimum dividing surface for minimizing recrossing may 
change with temperature, we have used the same dividing 
surface at all temperatures. 

Figure 4 shows the (J-shifted! rate constant versus the 
number of Lanczos iterations for T5400 K. Recall that each 
Lanczos iteration corresponds to an eigenvalue ~and eigen-
vector! of the Boltzmannized fux operator that is included in 
the calculation of the rate. At this temperature the rate con-
verges with around 20 iterations implying that there are 9 or 
10 thermally accessible states of the activated complex con-
tributing to the reaction rate. With the heavy masses of the 
oxygen and chlorine it is expected there will be more states 
accesible at a given temperature than for a reaction like 
H1H2 where all the atoms are ‘‘light.’’ The number of ei-
genvalues that it is necessary to include changes very slightly 
with temperature; at the highest temperature (T5700 K! 
about 24 Lanczos iterations are required. Note that the rate 
constant is within 2% of the fnal result after 14 iterations 
and within 1% after 18 iterations. 

Results from helicity conserving calculations are pre-
sented in Figs. 5 and 6. The HCA rate constants for K50 are 
plotted as a function of J(J11) on a semilog plot in Fig. 5 
J. Chem. Phys., Vol. 106,
FIG. 4. The thermal rate constant vs the number of Lanczos iterations ~i.e., 
the number of eigenvalues of the Boltzmannized fux operator used to cal-
culate the trace! at T5400 K. 

for T5250 and 400 K. At both temperatures a straight line is 
obtained. Figure 6 shows the HCA rate constant as a function 
of K2 for fxed J. Results are shown for T5250 K with 
J524 and T5400 K with J524 and 48. As shown on a 
semilog plot, kJK(T) vs  K2  is nonlinear but can be reason-
ably well approximated as a straight line. Note that for 
T5400 K, the slope of the line is independent of J. 

These results can be interpreted in terms of the discus-
sion in Section III B. In principle one needs to calculate 
kJK(T) within the HC approximation for all J and K that 
contribute. However, if the dependence of the rate on J and 
K is smooth, interpolation between the calculated values can 
be used to give the total rate constant. In that sense a rough 
‘‘interpolation’’ can be made by assuming ln kJK(T) 
52aJ(J11) and ln kJK(T)52hK2 ~i.e., ftting the curves as 
straight lines!. This is equivalent to the J-shifting approxi-
mation ~for fxed temperature! as discussed in Section III B 
and is tantamount to extracting ‘‘effective’’ moments of in-
ertia. ~We refer to rate constants obtained by this procedure 

FIG. 5. The partial rate constant kJK  ~within the helicity conserving approxi-
mation! vs J(J11) for K50. Results for T5400 K ~solid line with circles! 
and T5250 K ~dashed line with squares! are shown. 
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FIG. 6. The partial rate constant kJK  ~within the helicity conserving approxi-
mation! vs K2 for J fxed. Results are shown for T5400 K with J524 
~solid line with circles! and J548 ~dot-dashed line with triangles! and 
T5250 K with J524 ~dashed line with squares!. 

as HCA ‘‘adjusted.’’! Doing this we obtain at 
I B54.733105 a.u. and I A51.963103 a.u. at T5400 K and 
I B54.963105 a.u. and I A51.863103 a.u. at T5250 K. 
This indicates that the moments of inertia do not depend 
strongly on temperature. In addition, these values are in rea-
sonable agreement with those obtained by Koizumi et al.28 

from the transition state geometry. The change in the value 
of the rate constant is 20% at T5250 K and 8% at T5400 
K. ~See Table I and Fig. 7.! 

Figure 7 presents an Arrhenius plot of the calculated rate 
constant as compared to the results of Koizumi et al. and 
experiment.37,41 The present results are larger than both the 
experimental and previous theoretical rates at all tempera-
tures. Unfortunately, since the thermal rate constant is a 
highly averaged quantity, it is not possible to extract a par-
ticular feature of the potential energy surface to hold ac-
countable for the discrepancy. With regard to experiment, if 
the barrier height were raised only ;0.8-1.0 kcal/mole— 
recall that the ab initio value of the barrier was scaled from 
18.8 to 8.5 kcal/mole in the KSG potential energy surface— 
then our calculated rates would be in much better agreement

TABLE I. Total thermal rate constants within the J-shifting and helicity 
conserving approximations compared for the three-dimensional O1HCl re-
action in units of cm3 molecule21 s21. 

k~T! 

Temperature ~K! J-shifting HCA ‘‘adjusted’’a 

200 9.8~218!b 

250 1.0~216! 1.2~216! 
300 5.8~216! 
350 2.0~215! 
400 7.1~215! 7.7~215! 
500 3.7~214! 
600 1.0~213! 
700 2.8~213! 

aSee Section IV. 
bThe number in parentheses is the power of 10. 
J. Chem. Phys., Vol. 106,
FIG. 7. Arrhenius plot of calculated and experimental thermal rate con-
stants. The present J-shifted calculations are shown as a solid line and the 
results of Koizumi et al. as a dashed line. The asterisks are the present HCA 
‘‘adjusted’’ rate constants ~see the text!. The experimental results of Brown 
and Smith ~Ref. 37! are shown as flled circles and that of Mahamud et al. 
~Ref. 41! as open squares. ~The results of Koizumi et al. were measured 
from their Fig. 2 and hence may be considered approximate.! 

with experiment. The lack of agreement between our results 
and Koizumi et al.’s is harder to understand. At present we 
have no explanation for this. We note that the rate constants 
calculated by Moribayashi and Nakamura44 for the initial 
HCl rotational states j 50,1,2,—though not directly compa-
rable to the present results since they are not fully Boltzmann 
averaged over all initial states—are also larger than the rates 
of Koizumi et al. ~though smaller than ours!. Moribayashi 
and Nakamura also suggest that higher j states ( j .2) may 
contribute even more signifcantly to the rate and, if so, then 
their fully Boltzmann averaged rate constant would be even 
larger. 

We note that in Fig. 7 the present results shown indicate 
that the slope of lnk(T) vs 1/T  increases with increasing tem-
perature. This is also observed in the rates obtained by Koi-
zumi et al. as well as in the experimental results shown here. 
In fact the activation energy reported by Brown and Smith 
over the temperature range 293–440 K is 5.9 kcal/mole,37 

while a value of 7.3 kcal/mole is obtained by a least squares
ft of the data of Mahamud, Kim, and Fontijn41 over the 
range 353–1486 K. Indeed, the results of Mahamud et al. 
show a non-Arrhenius increase in the activation energy as 
the temperature is raised. Our results give an activation en-
ergy of 5.7 kcal/mole over the range of 200–700 K as com-
pared to about 5.0 kcal/mole from the results of Koizumi 
et al. over 285–667 K. Thus the theoretically calculated ac-
tivation energies are lower than those obtained by experi-
ment though the correct non-Arrhenius behavior is repro-
duced. 

We have also performed calculations for the thermal rate 
constant of the O1DCl reaction. These are compared to the 
results for the O1HCl reaction in Fig. 8. The deuterated rate 
constants were obtained by using the same basis set at a 
given temperature as was needed for the O1HCl reaction.
The most interesting result here is the tunneling enhance-
 No. 1, 1 January 1997 
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FIG. 8. Calculated thermal rate constants, k(T) vs 1000/T for the O1HCl 
~solid line! and O1DCl ~dashed line! reactions. 

ment of the rate when H is substituted for D. While the 
thermal rate constants for the reaction with DCl follow an 
Arrhenius form ~i.e., ln k(T) vs 1/T  is a straight line with the 
slope equal to the activation energy!, with HCl the activation 
energy becomes smaller as the temperature is lowered. This 
change in the activation energy at lower temperatures can be 
attributed to the tunneling of the H atom. In the deuterated
case the tunneling rate is reduced due to the heavier mass 
and the rate therefore remains Arrhenius at low temperature.
Indeed, the activation energy for the O1DCl reaction is 6.7 
kcal/mole, larger than that for O1HCl. Experimental mea-
surements of Brown and Smith found the ratio of the rate 
constants kO1HCl /kO1DCl at T5400 K as 2.4 60.7.38 This is 
smaller by a factor of 2 than the ratio of 4.8 obtained in the 
present calculations. 

V. CONCLUDING REMARKS 

A method for directly calculating thermal rate constants
for chemical reactions by means of the fux-fux autocorrela-
tion function was presented. The method has three main fea-
tures: ~1! The low rank of the Boltzmannized fux operator is 
used to advantage in evaluating the quantum mechanical
trace. An iterative Lanczos scheme is used to obtain the 
eigenfunctions of F̂ (b) corresponding to the largest ~in ab-
solute value! eigenvalues and the trace is evaluated in this 
~much smaller! basis. ~2! Absorbing potentials are used in 
the ~real! time propagation to prevent refection from the 
edge of the fnite basis ~here a DVR grid! making the method 
stable and thereby allowing the size of the basis to be re-
duced. ~3! A split-operator algorithm is used for both the real 
and imaginary time propagation. For the real time propaga-
tion, this produces the time correlation function at all inter-
mediate times necessary to perform the integral of Cf f  (t) at
no additional computational effort. 

We have applied this method to the calculation of ther-
mal rate constants for the O1HCl reaction over the tempera-
ture range T5200– 700 K. Signifcant recrossing of the di-
viding surface is seen at all temperatures from the 
J. Chem. Phys., Vol. 106,
oscillations in the fux correlation function. It is found that 
about 20–24 Lanczos iterations are needed for the Boltzman-
nized fux operator to obtain the full rate constant, implying 
that, in this temperature range, between 9 and 12 states of the 
activated complex contribute signifcantly to the rate. The 
calculated rate constants display a non-Arrhenius tempera-
ture dependence in agreement with experiment. However, 
the present rate constants are larger than experimental results 
and previous theoretical calculations. 

We have included the effects of nonzero total angular 
momentum using the J-shifting and helicity conserving ap-
proximations. These two approximations give results in rea-
sonable agreement ~within 10%–20%! with each other. It is 
expected that the HC approximation will be in good agree-
ment with exact calculations since the projection quantum 
number along the O–Cl axis should be well conserved. 

Rate constants were also calculated for the O1DCl re-
action. In the deuterated reaction, the rates obey the Arrhen-
ius relationship over the entire temperature range calculated 
(T5200– 500 K!. Comparing these results to those for the 
O1HCl reaction illustrates the effect of the tunneling en-
hancement of the rate constant at low temperatures. The re-
action involving H shows a non-Arrhenius increase in the 
rate below about 350 K that is not present in the deuterated
case. 
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33M. Mladenović and Z. Bacić, J. Chem. Phys. 93, 3039 ~1990!. 
34C. Leforestier, J. Chem. Phys. 94, 6388 ~1991!. 
35See, for example, D. H. Zhang and J. Z. H. Zhang, J. Chem. Phys. 101, 

1146 ~1994!. 
36M. S. Gordon, K. K. Baldridge, R. J. Bartlett, and D. Bernhold, Chem. 

Phys. Lett. 158, 189 ~1989!. 
37R. D. H. Brown and I. W. M. Smith, Int. J. Chem. Kinet. 7, 301 ~1975!. 
38R. D. H. Brown and I. W. M. Smith, Int. J. Chem. Kinet. 10, 1  ~1978!. 
39D. L. Singleton and R. J. Cvetanovic, Int. J. Chem. Kinet. 13 945 ~1981!. 
40I. W. M. Smith in Bimolecular Collisions edited by by M. N. R. Ashfold 

and J. E. Baggott ~Royal Society of Chemistry, 1989!, p. 53.  
41K. Mahamud, J.-S. Kim, and A. Fontijn, J. Phys. Chem. 94, 2994 ~1990!. 
42D. J. Rakestraw, K. G. McKendrick, and R. N. Zare, J. Chem. Phys. 87, 

7341 ~1987!; R. Zhang, W. J. van der Zande, M. J. Bronikowski, and R. 
N. Zare, ibid. 94, 2704 ~1991!. 

43A. Persky and M. Broida, J. Chem. Phys. 81, 4352 ~1984!. 
44K. Moribayashi and H. Nakamura, J. Phys. Chem. 99, 15410 ~1995!. 
45B. Ramachandran, J. Senekowitsch, and R. E. Wyatt, J. Mol. Struct. 

~Theochem! ~to be published!. 
46B. Ramachandran ~private communication!. 
 No. 1, 1 January 1997 

https://1989!,p.53

