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We have used a discrete variable representation (DVR) with absorbing boundary conditions (ABC) 
to calculate initial state-selected reaction probabilities and photodetachment intensities. We apply 
this method to the OH + H, reaction constrained to a plane with the OH bond frozen. The calculated 
reaction probabihties have al1 the qualitative features observed in full dimensional calculations. We 
have similarly computed arrangement-selected photodetachment intensities for one geometry of the 
HOHY anion. The resulting spectrum has a dominant peak which will present a test of the neutral 
potential energy surface upon comparison with experimental results. 

I. INTRODUCTION 

Quantum mechanical scattering calculations have ad-
vanced to the point that rigorous calculations are now pos-
sible for a number of atom-diatom reactions’ (A + BC-+A B 
+ Cj, and the first attempts at rigorous treatments of four 
atom reactions are beginning to appear.“-” Due to the light 
masses involved and the availability of a reasonable potential 
energy surface, the 

OH+H,-+H,O+H (1.1) 

reaction has become the benchmark of choice for exact quan- 
tum treatments of a diatom-diatom collision. Already, there 
have been two full dimensional state-selected time-
dependent wave packet calculationsg7’0 on this system as 
well as a time-independent calculation of the cumulative re-
action probability using a discrete variable representation 
(DVR) with absorbing boundary conditions (ABC) to repre-
sent the Green’s function.‘* 

Despite the advances of the last decade, exact quantum 
scattering calculations remain unfeasible for systems with 
five or more atoms and indeed, for most four atom reactions. 
At the same time, it may not be necessary to treat all the 
degrees of freedom in a large system using rigorous quantum 
mechanics. An excellent example of this is the OH bond in 
reaction (1 .lj, Ab initio calculations show that the bond dis- 
tance hardly changes throughout the entire reaction,12 and 
the. full dimensional dynamics calculations show that freez- 
ing this bond has a minimal effect on the reaction 
probabilities.g”0 The logical approach to treating a large sys- 
tem “rigorously” may lie in reduced dimensionality, mixed 
quantum-classical,13.1” or mixed quantum-semiclassical 
approaches.15 

Numerous reduced dimensionality studies have been 
performed on reaction (1.1) and its isotopic variants. Clary 
and co-workers’-” have calculated state-to-state S-matrix el-
ements using the rotating bond approximation (RBA) and 
obtained good agreement with experimental results.” Echave 
and Clary have also carried out a full planar calculation.5 
Wang and Bowman have used the adiabatic bend approxima- 
tion to compute state-to-state probabilities and cross 
sections.6 Their results show mode-specificity for the 

H+H,O reaction in agreement with the experimental results 
of Crimi6 and Zare.17 Baer and co-workers have treated the 
reaction using a sudden approximation for the angular de-
grees of freedom.7 

Comparison of reactive. scattering calculations and ex-
periments can provide a great deal of information about the 
potential energy surface. However, many details are ob-
scured by summing over all the partial waves.ls In addition, 
the results depend not only on the transition state region, but 
also on the features of the entrance and exit channels. Neu- 
mark and co-workers’g have been able to access information 
about the transition state directly by performing photodetach-
ment experiments. Comparison with theoretical calculations 
can give detailed information about the transition state, as 
has been seen for the F+H, reaction.*s,*’ 

The DVR-ABC formalism for calculating the full reac-
tive scattering Green’s function was first introduced by 
Seideman and Miller” and applied to cumulative reaction 
probabilities. Subsequently it was shown to be an efficient 
method for calculating stute-specgic reaction 
probabilities.‘3324 The purpose of this paper is twofold: (1 j to 
test the DVR-ABC method on a large multidimensional re-
active scattering system, and (2) to show how the same for-
malism can be used to efficiently calculate photodetachment 
intensities. 

In Sec. II we outline the DVR-ABC formalism for cal-
culating initial state-selected reaction probabilities and pho- 
todetachment intensities. We also show how this method al-
lows us to obtain arrangement-selected intensities with no 
increase in computational effort. Section III discusses the 
de.tails of the calculations including the Hamiltonian, the ba- 
sis set, the asymptotic state, and the iterative methods used to 
solve the linear algebra problem. Section IV presents the 
results of the scattering and photodetachment calculations, 
and Sec. V concludes. 

II. SUMMARY OF TNEORY 

He.re., we outline the basic DVR-ABC formulas used in 
this study to calculate both initial state-selected probabilities 
and photodetachment intensities. Before embarking on this, 
we note that the discrete variable representation, and other 
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grid point methods, has been developed and used by many B. Photodetachment intensity 
persons,25-35with the work of Light et aZ.36 being particu- 
larly important in recent years. Also, an absorbing potential 
(negative imaginary potential, optical potential) has been 
used by a number of workers in both time-dependent37-40 
and time-independent41-43 frameworks. By the “DVR-ABC 
approach” summarized below we mean the specific represen-
tation of the outgoing wave Green’s function using these 
techniques and the scattering formulae that result from it. 

A. Reactive scattering 

The DVR-ABC approach has been demonstrated to be 
an efficient method for calculating cumulative,1”22 initial 
state-selected?3924and state-to-state reaction probabilities.23 
The methodology has been described in detail elsewhere;23 
here we will provide a brief summary. 

In this paper we are interested only in the total reaction 
probability from a given state of the reactants. This probabil-
ity is defined in terms of the state-to-state S-matrix elements 
as 

p,p)=X P,,np)12. (2.1) 
“P 

where n, and np represent the set of reactant and product 
quantum numbers, respectively. In the DVR-ABC formal-
ism, all of the computational effort is placed in computing 
the scattering Green’s function with outgoing wave boundary 
conditions, 

e+(E)=(E-fi+iE)-l. (2.2) 
This is accomplished by allowing the Ye,” which is added 
to the energy to enforce the outgoing wave boundary condi-
tions, to be a function of position. That is, E(q) is zero in the 
interaction region and “turns on” in the reactant and product 
valleys. These absorbing boundary conditions allow the use 
of a basis which is localized in the interaction region to rep-
resent the Green’s function. 

For the purpose of general use in large dimensional 
problems, we have chosen to use a DVR basis (see Sec. 
III A). The initial state-selected reaction probability is then 
given by 

P,,(E)= f ‘P;;+‘~~, (2.3) 

where all bold face quantities are vectors or matrices in the 
DVR, and E~(E,.) is the part of the absorbing potential in the 
product (reactant) arrangement. Wnr is the reactive scattering 
wave function for an initial state n,. of the reactants. This is 
obtained from the asymptotic state of the reactants cP,r by 
the DVR-ABC version of the Lippmann-Schwinger equa-
tion 

qIm,=iG+(E).q.@,r. (2.4) 

As has been noted previously,23 this formulation for obtain-
ing the initial state-selected probability has the advantage of 
requiring less computational effort than a corresponding cal-
culation of the more detailed state-to-state probabilities. 

The photodetachment intensity is given within the 
Franck-Condon approximation by 

Z(E)= 2 dE)l(‘h~E)14,)12~ (2.5) 
ny=nr ,” P 

where & is the bound state of the anion. The density of 
states, p(E), is associated with the normalization of the scat- 
tering wave function, which for our choice of normalization 
is p(E) =(2&)-l. This approximation has been shown to be 
very useful and accurate.21”4 

In the DVR-ABC approach Eq. (2.4) is used to obtain 
the reactive scattering wave function. The bound state DVR 
vector can be obtained by solving an eigenvalue problem 
using the same basis as for the scattering wave function. The 
Franck-Condon intensity is thus given by 

Z(E)= & c &G*(E)++‘ny
ny=n,,np 

+G(E).&. (2.6) 

However, one can make use of the closure relation derived in 
Ref. 23 to obtain the following simpler result: 

Z(E)=: &G*(E).cG(E).&,, (2.7) 

for the total photodetachment intensity. Moreover, since the 
full absorbing potential can be written as the sum of the 
absorbing potentials in the reactant and product arrange-
ments, E=E,.+~ , one can divide the intensity into the parts 
due to the neutral dissociating into reactants and the part 
dissociating into products (that is, arrangement-selected in-
tensities). Then the contribution from a given arrangement y 
is given by 

z,(E)=; &G*(E)-e,-G(E)*+b-

Alternatively, starting again from Eq. (2.5), we can use 
the completeness relation for the scattering wave function 

c p(E)I~C,(E))(~Ir,(E)I=S(E-1Ci). (2.9)
n=nr ,np 

The right-hand side is just the microcanonical density opera-
tor which can be expressed in terms of the outgoing wave 
Green’s function 

S(E-Z?)= - k Im e’+(E). 

This gives us an alternative, direct way to calculate the total 
photodetachment intensity. In the DVR-ABC formulation 
this is given by 

Z(E)=-; Im 4f;-G+(E). t$b. (2.11) 

Note that both methods require the same amount of compu-
tational work: the action of the Green’s function onto a 
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single vector. Thus the direct and arrangement-selected pho- 
todetachment intensities can be computed by Eqs. (2.11 j and 
(2.8) simultaneously with no extra work. 

III. DETAILS OF CALCULATiON 

A. The Hamiltonian and the basis set 

Since we are interested in initial state-selected quantities, 
we have chosen to use the Jacobi coordinates of the reac-
tants. This coordinate system is advantageous for describing 
the asymptotic states of the reactants. We denote the Hz and 
OH bond distances by R r and R2, respectively. The distance 
between the HZ and OH centers of mass is R3 . ‘yl is the angle 
between R, and R,, y2 the angle between R, and Rs, and cp 
is the torsional angle. 

We have calculated reaction probabilities and photode-
tachment intensities explicitly treating four degrees of free-
dom. The OH bond distance is frozen at its equilibrium value 
and the torsional angle is fixed at cp=O, i.e., the planar con-
figuration. These give the proper transition state geometry 
for the reaction. The quality of these approximations can be 
seen in comparing our results to the higher dimensional re-
active scattering calculations. One can obtain the reduced 
dimensionality Hamiltonian in a straightforward way from 
the full Hamiltonian. The four degree-of-freedom Hamil-
tonian for J=O is given by 

fi? a2 R” 32
I;r=--y----z+ c?

JI2,x, aR7 2y3 dR, 

+~(R,,R:!=R:Lq,R3,8,,82,~=0j, (3.1) 
where 3, and jZ are the angular momentum operators for the 
H2 and OH rotation, respectively. We will use jr and ju, 
interchangeably for the Hz rotation quantum number and 
similarly jZ and jou . 

In our calculations we have used the potential energy 
surface fit by Schatz and Elgersmad5 to the ab initio results 
of Walch and Dunning” (the WDSE surface). This surface 
also includes a modification by Clary* to remove a spurious 
well on the OH+Hz side of the barrier. 

The basic formalism outlined in Sec. II could equally 
well be applied using a finite basis re.presentation other than 
a DVR. However, the DVR basis has the advantages that the 
potential energy is a diagonal matrix and the Hamiltonian 
matrix is sparse for a multidimensional problem. The former 
means that no integrals need to be evaluated numerically to 
obtain the matrix elements of the potential. The sparsity al-
lows the linear algebra to be solved using iterative methods 
(See Sec. 111 C) which makes large dimensional problems 
tractable when one cannot store the entire Hamiltonian ma-
trix. 

We have used the sine function DVR of Coibert and 
Mille? for the R, and R, coordinates since they represent 
the large-amplitude motions making up the reaction coordi-
nate. A Gauss-Legendre DVR was used for the angles yr 
and x. However, the exchange symmetry of H2 was ex-

ploited so that, for a given parity, only half the angular DVR 
points were needed for x. In practice, a direct product {raw) 
grid is first laid down in these coordinates. The “refined” 
grid is then obtained by truncating the raw grid according to 
two criterion: (1) an energy cutoff, i.e., if the potential at a 
given DVR point is greater than some value V,,,, then that 
point is discarded, and (2) the boundaries of the absorbing 
potential in the reactant and product valleys. Then the matrix 
elements of the Hamiltonian are computed in the DVR. Fi-
nally, the linear system 

(EI-a+i~~*~~r=i~~.~,,~ i.3.2) 

is solved to obtain the reactive scattering wave function as 
given by Eq (2.4). 

As pointed out above, the potential energy matrix ele-
ments are diagonal. The diagonal elements are simply the 
potential evaluated at the DVR grid point. The DVR matrix 
elements of the absorbing potential are also diagonal and 
similarly evaluated. The radial kinetic energy matrix ele-
ments can be expressed in cIosed form”” as 

= 2ph;R2 (- 1 p-i’)(f,ji,$ 
(Y a 

?r2/3 - 1/2iz, i=i’ 

x 2 2 i3.3)-~ (i-i’)Z (ifi’)*’ if i” 
i 

where a= 1 or 3 and AR, is the grid spacing. The 1 D kinetic 
energy matrix elements for the angular DVR are given by a 
sum over Legendre polynomials: 

N-l 

CFang2)i,i’= C Gipjicos Y2i) 
j=O 

Xj(j+ l)fi’&Pj(COS Y2i’) 

for the OH rotation, where iV is the number of angular DVR 
points. For the Hz rotation, the symmetrized matrix elements 
are given by 

N-l 

(Fanglj$= C JwiPj(COS yli)j(j+ I)h-’ 
j=O 

‘~[, +(- l)‘pii’]JwilPj(COS Y~i,) (3.5) 

where p is the parity quantum number. Note that for the 
symmetrized case we use only half of the angular DVR 
points for yl. 

Typically we need 14 DVR points for the 3/z and 7 points 
for the symmetrized ?I coordinate. We note that using as few 
as 10 and 5 angular points reduces the accuracy only slightly 
and produces a significant savings in the size of the basis. 
The number of radial DVR points are determmed by speci- 
fying a grid constant, N, , which is the number of grid points 
per de Broglie wavelength. A grid constant of 2.6 gives con-
verged results. Depending on the scattering energy, the DVR 
basis consists of between 20 000 to as many as 50 000 points 
for the highest energies. 

The absorbing potential is taken to be a function of the 
translationai Jacobi coordinate in the reactant arrangement, 
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E,= E,(R~), and the Hz bond distance in the product arrange-
ment eI, = E,,( R r) . There are several satisfactory choices for 
the functional form of the absorbing potential. However, any 
choice must turn on slowly enough not to cause reflection, 
yet be strong enough to absorb all outgoing flux. We have 
found the quartic potential to work well, 

(3.6) 

where y=p, r is the arrangement index and R, = R 1 , 
R,=h- RQ., and Rmax,y are the starting and ending points of 
the absorbing potential in the y arrangement. X is a strength 
parameter representing the maximum value of the absorbing 
potential, generally it is taken to be about 2 eV The begin-
ning of the absorbing strip is chosen such that the imaginary 
potential has significant value only where the interaction po-
tential is small. 

B. The asymptotic state 

The asymptotic state of the reactants used in Eq. (2.4) 
can be defined by 

(3.7) 

where A,,,,,, is the asymptotic Hamiltonian for reactants 
given by 

fiasYm= lim g. (3.8) 
Rpm 

When the OH and Hz diatoms are far apart, the eigenvalue 
problem defined by Eq. (3.7) is separable and becomes four, 
one-dimensional eigenvalue/eigenfunction problems. How-
ever, only for the Hz vibrational eigenfunctions do we need 
to carry out a numerical calculation; for the translational co-
ordinate R,, spherical Hankel functions of the second kind 
are the solutions of the radial equation (including the cen-
trifugal potential) with the proper asymptotic boundary con-
ditions, and the OH and H, rotations are free rotors with 
Legendre polynomial eigenfunctions. Expressing the asymp- 
totic state in a space-fixed axis, one has 

=cp * (RI) hzj2’(knR3) 
Jv, 

X&l + (- l)('+j')]Pj,(COS Yl)Pj,(COS y2), (3.9) 

where we have noted J= M = K = 0. (pv is the asymptotic H, 
vibrational eigenstate, and we have normalized the transla-
tional function with respect to the incoming flux; k, and v, 
are the translational wave vector and velocity, respectively. 
The Clebsch-Gordan coefficients are derived from the body- 
fixed to space-fixed transformation. J12 is the vector addition 
of the diatom angular momenta, jr and j,, and J=O is ob- 
tained from the vector addition of J12 and 1. p defines the 
parity of the Hz rotation, and 1 is the orbital angular momen-
tum quantum number. 

C. Iterative methods 

For a multidimensional problem, the Hamiltonian is of- 
ten too large to store in core memory. There are several suit- 
able iterative methods one can use which require only the 
ability to multiply the Hamiltonian onto a vector. For the 
reactive scattering calculations we have used the Newton al-
gorithm developed by Auerbach and Leforestier.24*46 This 
method has the advantages that it requires very little core 
memory (our largest calculations use only -10 MB), dis-
plays rapid convergence, and gives the ability to “dial in” 
the allowed error. 

For the photodetachment calculations, we used the gen- 
eralized minimum residual (GMRES) algorithm.47 This 
method requires much more core memory, however, it has 
better convergence properties than other iterative methods 
since the Krylov vectors are explicitly reorthogonalized. 
Thus for an NX N matrix, one is guaranteed to converge in N 
iterations. The reason a different method is necessary for the 
photodetachment calculations lies in the difference of the 
right-hand sides (i.e., the vectors the Green’s function acts 
on). In this case the right-hand side is the anion bound state 
which has very little net momentum on the neutral surface. 
Any method which is based on a time-dependent propagation 
scheme (such as Newton) will require a long propagation 
time and thus GMRES is preferable despite the requirement 
of large amounts of core memory. 

I& R!J$JJ LTS 

A. Initial state-selected probabilities 

We have calculated initial state-selected reaction prob-
abilities for the OH(jou) + H2(v,juJ reaction for many 
sets of initial quantum numbers over a range of energies. In 
order to compare with full dimensional calculations, the re-
action probabilities as a function of translationa energy are 
shifted, as has been done previously by Clary.2 The shift is 
equal to the difference in zero point energy between the tran- 
sition state and the asymptotic reactants of the neglected de- 
grees of freedom, namely, the OH stretch and the torsional 
angle. This shift is 0.031 eV2 

The transition state on the present potential energy sur-
face is almost collinear, with an O-H-H angle of about 
164”, and it is an “early” barrier (of 0.26 eV), consistent 
with the exothermic character of the reaction (Hammond’s 
postulate). Based on Polanyi’s rules,48 this would imply that 
translational energy would be more effective than H2 vibra- 
tion in promoting the reaction. These predictions have in fact 
been borne out by experiment. Light and Matsumoto found 
that exciting H2 with one quantum of vibration increases the 
rate by about 3 orders of magnitude, while exciting both H2 
and OH gives only a slightly larger increase.4g Zellner and 
Steinert observed an increase of about two orders of magni-
tude when the H, vibration is excited.50 However they also 
found that the same amount of thermalized energy increases 
the rate by about 5000. Glass and Chaturvedi measured the 
same rate increase on exciting H2 and a factor of 1.5 upon 
excitation of OH.” Recently, the first molecular beam ex-
periment for the D,+OH-+HOD+D reaction was performed 
by Alagia et al.52 They measured the angular distribution and 
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FIG. 1. Initial state-selected reaction probabilities for OH(joH = 0) 
+ Hztn = O.j,J as a function of translational energy. The reaction prob- 
ability forju- = 0 is the sotid line with solid circles, jH2 = 1 the dotted line 
with open circles.ju2 = 2 the dashed line with solid squares,jn2 = 3 the long 
dashed line with open squares, and ju, = 4 the dot-dash line with open 
triangles. Note these probabilities have been shifted to account for the fro- 
zen degrees of freedom (see the text). 

found predominantly backscattered products which is consis- 
tent with a nearly collinear transition state. Clary’s three de- 
gree of freedom RBA calculations are in excellent agreement 
with the experimental distribution.” 

Figure 1 shows the react-ion probabilities as a function of 
initial j, for v =0 and j,, =O. As for the H+H, reaction, 
the probability is largest for jn? = 1. Although there is not 
complete quantitative agreement, the reaction probabilities 
shown have the same qualitative dependence on initial rota-
tional quantum number and translational energy as the five 
degree of freedom results of Zhang and Zhang.’ (We note 
that full dimensional calculations have shown that including 
the OH stretch changes the results minimally9*10 and there- 
fore comparing to the five degree of freedom results high-
lights the effe.ct of the torsional angle.) However, our results 
are qualitatively different from the planar results of Echave 
and Clary5 who observe a monotonic decrease in the reaction 
probability with initial jn?. The difference between these two 
planar calculations can be found in the treatment of the dia- 
tom rotations. Echave and Clary represented the diatoms as 
plane rotors, whereas we have treated the diatoms as three 
dimensional free rotors with the projection quantum number 
constrained to equal zero. 

In Fig. 2 we show the reaction probabilities for several 
differe.nt values of jot., with v =0 andjn2 = 0. There is a very 
weak dependence on the initial OH rotational quantum num-
ber. This is not surprising since this rotation is not a major 
component of the reaction coordinate and thus should not 

P 0.3 .? 
4 
$ 0.2 
!!I 

0.1 

O~oo~“-.~--.‘-~~. 
0.4 0.6 

Translational Energy (eV) 

FIG. 2. Initial state-selected reaction probabilities for OH(jou) + Hatu 
= O,jHZ = 0) as a function of translational energy. The symbols for the dif- 
ferent jon are the same as for jul in Fig. 1. These probabilities have also 
been shifted. 

tively large vibrational spacing for Hz means that 
OH+H,?(v = I) proceeds virtually without a barrier. Thus the 
reaction probability is greatly enhanced by vibrational exci-
tation of Hz, as noted above. Additionally, the calculations 
by Zhang and Zhang’ and by Neuhauser” have observed 
strong resonance features in the reaction probabilities for ini-
tially vibrationally excited Hz. These features are also ob-
served in our calculations as shown in Fig. 3. The lowest 
energy resonance is missing in our results (since we have 
shifted our probabilities), however, the remaining features 
are well reproduced. 

LA.-.-, _ 4 -IL__--
0.Q 0.1 02, 0.3 0.4 0.5 

Translational Energy icV) 

affect the hydrogen atom transfer as strongly as the Hz rota- 
tion. This behavior has also been observed in the planar cal- 
culations by Echave and Clary5 as well as by Zhang and 
zhang.8’9 

The small barrier for this reaction coupled with the rela- 

FIG. 3, Initial state-selected reaction probabilities for OH(jotc) + H,(u 
= 1 ,j,J as a function of translational energy. The reaction probability for 
(jOH = O,j,, = 0) is the solid line with solid circles. Go,, = 1 ,j,a = 0) the 
dotted line with open circles, and (jou = OjHl = I) the dashed line with 
solid squares. These probabilities have also been shifted. 
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ScatteringEnergy (eV) 

FIG. 4. Photodetachment intensities for para HOHC. The solid line was 
calculated using the direct method of E!q. (2.11). The open circles were 
calculated by the arrangement-selected method of Eq. (2.8). The dashed 
lines with solid circles are the 1D Franck-Condon factors. The intensities 
have been scaled so that the highest point on the direct spectrum equals one. 
The ID Franck-Condon factors were scaled so that the largest equals three- 
fourths. 

6. Photodetachment intensities 

We have also calculated intensities for photodetaching 
an electron from HOH; to give OH+H, and H+H,O. 
Though this system is isoelectronic with the FH, system, 
there are many crucial differences. Xantheas and Dunning 
have computed critical points and force constants for the 
HOH, anion.‘3 They found two stable geometries separated 
by a barrier of about 2 kcal/mol. One is a linear complex of 
HO- and H2 (we will refer to this as Anion I) and the other 
is roughly a van der Waals complex of HZ0 and H- (Anion 
II). It is not clear without further ab initio calculations 
whether the anion ground state is delocalized over both ge-
ometries and if so to what degree. The Anion I geometry lies 
under the reactant side of the neutral surface whereas the 
Anion II geometry sits under the product side. Neither is 
close to the transition state geometry. Clearly without a rela- 
tively complete potential energy surface for the anion a de-
localized ground state cannot be treated. We have chosen to 
address all our calculations to the Anion I geometry. 

Because of the inversion symmetry of the H, we can 
carry out either para or ortho calculations. Since there is 
only a small barrier to internal rotation of Hz in the anion, the 
ortho and para anion ground states have different energies. 
In terms of the neutrals formed, the para anion state will 
only give rotational states of H, with even parity (i.e., jHZ 
= 0,2,4;**) whereas the ortho anion state will yield only 
odd jN2. We have used a separable anion wave function with 
an equilibrium geometry defined by R3=4.57 a.u., R,=1.47 
a.u., and ~~=x=r. We have assumed harmonic potentials 
with frequencies w3=354 cm-‘, w,=4096 cm-‘, wY1=688 
cm-‘, and wp= 124 cm-‘. 

Figures 4 and 5 show the photodetachment intensities 
using both the direct (the solid line) and arrangement- 

0.8 

!i 
5 0.6 

0.0I-
0.26 0.28 0.30 0.32 0.34 O.LIb 

Scattering Energy (eV) 

FIG. 5. Same as in Fig. 4 for ortho HOHY . 

selected (the open circles) methods, Eqs. (2.11) and (2.8), 
respectively. The excellent agreement between these two 
theoretical expressions is a stringent test on the convergence 
of the calculation, both with respect to size of the basis and 
the linear algebraic calculation of the Green’s function. The 
arrangement-selected results indicate that virtually no neutral 
products (H+H,O) are formed and the intensity is due com- 
pletely to the formation of reactants (OH+H,). This is ex-
pected given the location of the anion geometry under the 
reactant valley of the neutral surface. 

To provide qualitative insight into the spectra in Figs. 4 
and 5 we consider an approximate separable model. Specifi-
cally, the scattering wave function is approximated as the 
product of four 1D wave functions, so that the overall 
Franck-Condon (FC) factor in Eq. (2.5) is the product of 
four 1D Franck-Condon factors. Furthermore, since the po- 
tential surface is relatively flat in the translational coordinate 
in the Franck-Condon region, the 1D translational wave 
function is taken to be a plane wave (i.e., free particle wave 
function). This 1D translational FC factor has an exponential 
peak at zero translational energy, so that the overall FC fac- 
tor has a peak in the spectrum at each threshold energy that a 
new neutral channel opens up. Each peak has this shape of a 
decreasing exponential and is modulated by the product of 
the Franck-Condon overlaps in the three perpendicular de-
grees of freedom. These separable Franck-Condon factors 
are superimposed on the spectrum in Fig. 4. 

The dominant feature in Fig. 4, a sharp peak at -0.3 eV, 
is thus seen to correspond to the ground state reactant chan- 
nel, jH, = jo, = 0. Note that in this energy range we are only 
exciting to the ground vibrational state of H,. The next two 
peaks are for jHZ = 0 and joH=l and joH=2. The smaller 
doublet around 0.33 eV corresponds to jH, = 1 with joH=O 
and jo,= 1. Clearly there is significant coupling between 
these degrees of freedom on the neutral surface, however, 
this simple model allows us some insight into the origin of 
the prominent features of the spectrum. We should note that 
in reality one might see features in the spectrum due to the 
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torsional angle which we have frozen. However, since both 
the anion and neutral equilibrium geometries are planar, we 
would not expect this to be an important omission. 

The ortlzo HOHi photodetachment intensity is shown in 
Fig. 5 with the separable Franck--Condon factors. The 1D H, 
potential on the neutral surface also has a small banier to 
rotation thereby splitting the para and ortho ground state 
energies. This is observed in the shift of the dominant peak 
to higher energies in Fig. 5. The assignment of the peaks in 
this case is much the same as for the pm-a spectrum except 
that now the jn, = 1 doublet occurs at about 0.37 eV and the 

1, joH=3 peak occurs at lower energy around 0.363 eV. jHZ = 
These results should provide a starting point for com-

parison of theory and experiment and a test of the neutral 
potential energy surface. More nb initio calculations are 
needed to better define the anion potential before detailed 
comparisons can be made, however the prominent features 
seen in Figs. 4 and 5 should be a distinctive signature of the 
Anion I geometry. 

V. CONCLUDING REMARKS 

We have used the DVR-ABC method for reactive scat-
tering to calculate initial state-selected reaction probabilities 
for the OH+H2 reaction. We have demonstrated that this is 
an efficient method for such a large, multidimensional sys-
tem. We believe that to treat reactions in large systems (four 
atoms and more) in an accurate way the logical approach will 
be to treat only a few degrees of freedom using rigorom 
quantum mechanical methods and incorporate the rest in 
some approximate (but accurate!) way. In that context, this 
reaction provides an excellent opportunity to test such re-
duced dimensionality methods on a large system for which 
full dimensional results are available. Many such methods 
have already been applied to reaction (1.1) and its reverse. 
We have shown that all the qualitative features-including 
resonance features-of the full dimensional calculations are 
obtained while freezing the OH bond and torsional angle. 
Clearly, this result will not apply for most reactions and the 
next step should be to test these methods on a variety of 
systems to de.termine their generality. 

We have shown how the DVR-ABC formalism for gen-
erating the Green’s function can be used to obtain total and 
arrangement-selected photodetachment intensities. We have 
used this method to calculate photodetachment spectra for 
pnra and ortho HOHT and we are able to assign the features 
in the spectra according to a simple zeroth order model. 
These results provide an opportunity for comparison with 
experiment which will be a test of the accuracy of the neutral 
potential energy surface. However, due to its complicated 
nature more nb initio results are needed for the anion surface 
before a complete study can be undertaken. 
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